skip to main content

This content will become publicly available on February 1, 2023

Title: Interferometric Detections of sdO Companions Orbiting Three Classical Be Stars
Abstract Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2034336 1636624 2009489 1908026
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe the public release of the Cluster Monte Carlo ( CMC ) code, a parallel, star-by-star N -body code for modeling dense star clusters. CMC treats collisional stellar dynamics using Hénon’s method, where the cumulative effect of many two-body encounters is statistically reproduced as a single effective encounter between nearest-neighbor particles on a relaxation timescale. The star-by-star approach allows for the inclusion of additional physics, including strong gravitational three- and four-body encounters, two-body tidal and gravitational-wave captures, mass loss in arbitrary galactic tidal fields, and stellar evolution for both single and binary stars. The public release of CMC is pinned directly to the COSMIC population synthesis code, allowing dynamical star cluster simulations and population synthesis studies to be performed using identical assumptions about the stellar physics and initial conditions. As a demonstration, we present two examples of star cluster modeling: first, we perform the largest ( N = 10 8 ) star-by-star N -body simulation of a Plummer sphere evolving to core collapse, reproducing the expected self-similar density profile over more than 15 orders of magnitude; second, we generate realistic models for typical globular clusters, and we show that their dynamical evolution can produce significant numbers of blackmore »hole mergers with masses greater than those produced from isolated binary evolution (such as GW190521, a recently reported merger with component masses in the pulsational pair-instability mass gap).« less
  2. null (Ed.)
    ABSTRACT The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical interactions alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries in the coupled magnetohydrodynamics and direct N-body star cluster formation code torch. We compare simulations with, and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations, finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation, we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with mass ratios above the q ≥ 0.1 detection limit. Our simulations also indicate that dynamical interactions in the presence of gas during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller semimajor axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems, and systems formed dynamically in the presence of an initial populationmore »of binaries differ from those formed in simulations with single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the properties of binary star systems.« less
  3. ABSTRACT The binary star Par 1802 in the Orion Nebula presents an interesting puzzle in the field of stellar dynamics and evolution. Binary systems such as Par 1802 are thought to form from the same natal material and thus the stellar members are expected to have very similar physical attributes. However, Par 1802’s stars have significantly different temperatures despite their identical (within $3\, {\rm per\, cent}$) masses of about 0.39 M⊙. The leading proof-of-concept idea is that a third companion gravitationally induced the two stars to orbit closer than their Roche limit, which facilitated heating through tidal effects. Here we expand on this idea and study the three-body dynamical evolution of such a system, including tidal and pre-main-sequence evolution. We also include tidal heating and mass transfer at the onset of Roche limit crossing. We show, as a proof-of-concept, that mass transfer combined with tidal heating can naturally explain the observed temperature discrepancy. We also predict the orbital configuration of the possible tertiary companion. Finally, we suggest that the dynamical evolution of such a system has pervasive consequences. We expect an abundance of systems to undergo mass transfer during their pre-main-sequence time, which can cause temperature differences.
  4. GW190521 challenges our understanding of the late-stage evolution of massive stars and the effects of the pair-instability in particular. We discuss the possibility that stars at low or zero metallicity could retain most of their hydrogen envelope until the pre-supernova stage, avoid the pulsational pair-instability regime and produce a black hole with a mass in the mass gap by fallback. We present a series of new stellar evolution models at zero and low metallicity computed with the Geneva and MESA stellar evolution codes and compare to existing grids of models. Models with a metallicity in the range 0-0.0004 have three properties which favour higher BH masses as compared to higher metallicity models. These are (i) lower mass-loss rates during the post-MS phase, (ii) a more compact star disfavouring binary interaction and (iii) possible H-He shell interactions which lower the CO core mass. We conclude that it is possible that GW190521 may be the merger of black holes produced directly by massive stars from the first stellar generations. Our models indicate BH masses up to 70-75 Msun. Uncertainties related to convective mixing, mass loss, H-He shell interactions and pair-instability pulsations may increase this limit to ~85 Msun.
  5. Abstract The majority of binary star systems that host exoplanets will spend the first portion of their lives within a star-forming cluster that may drive dynamical evolution of the binary-planet system. We perform numerical simulations of S-type planets, with masses and orbital architecture analogous to the Solar system’s 4 gas giants, orbiting within the influence of a 0.5 M⊙ binary companion. The binary-planet system is integrated simultaneously with an embedded stellar cluster environment. ∼10 per cent of our planetary systems are destabilized when perturbations from our cluster environment drive the binary periastron toward the planets. This destabilization occurs despite all of our systems being initialized with binary orbits that would allow stable planets in the absence of the cluster. The planet-planet scattering triggered in our systems typically results in the loss of lower mass planets and the excitement of the eccentricities of surviving higher mass planets. Many of our planetary systems that go unstable also lose their binary companions prior to cluster dispersal and can therefore masquerade as hosts of eccentric exoplanets that have spent their entire histories as isolated stars. The cluster-driven binary orbital evolution in our simulations can also generate planetary systems with misaligned spin-orbit angles. This is typically done asmore »the planetary system precesses as a rigid disk under the influence of an inclined binary, and those systems with the highest spin-orbit angles should often retain their binary companion and possess multiple surviving planets.« less