skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interferometric Detections of sdO Companions Orbiting Three Classical Be Stars
Abstract Classical Be stars are possible products of close binary evolution, in which the mass donor becomes a hot, stripped O- or B-type subdwarf (sdO/sdB), and the mass gainer spins up and grows a disk to become a Be star. While several Be+sdO binaries have been identified, dynamical masses and other fundamental parameters are available only for a single Be+sdO system, limiting the confrontation with binary evolution models. In this work, we present direct interferometric detections of the sdO companions of three Be stars—28 Cyg, V2119 Cyg, and 60 Cyg—all of which were previously found in UV spectra. For two of the three Be+sdO systems, we present first orbits and preliminary dynamical masses of the components, revealing that one of them could be the first identified progenitor of a Be/X-ray binary with a neutron star companion. These results provide new sets of fundamental parameters that are crucially needed to establish the evolutionary status and origin of Be stars.  more » « less
Award ID(s):
2034336 1636624 2009489 1908026
PAR ID:
10325391
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rapid rotation and nonradial pulsations enable Be stars to build decretion disks, where the characteristic line emission forms. A major but unconstrained fraction of Be stars owe their rapid rotation to mass and angular momentum transfer in a binary. The faint, stripped companions can be helium-burning subdwarf OB-type stars (sdOBs), white dwarfs (WDs), or neutron stars. We present optical/near-infrared Center for High Angular Resolution Astronomy (CHARA) interferometry of 37 Be stars selected for spectroscopic indications of low-mass companions. From multiepochH- and/orK-band interferometry plus radial velocities and parallaxes collected elsewhere, we constructed 3D orbits and derived flux ratios and absolute dynamical masses of both components for six objects, quadrupling the number of anchor points for evolutionary models. In addition, a new wider companion was identified for the known Be + sdO binary 59 Cyg, while auxiliary Very Large Telescope Interferometer/GRAVITY spectrointerferometry confirmed circumstellar matter around the sdO companion to HR 2142. On the other hand, we failed to detect any companion to the six Be stars withγCas–like X-ray emission, with sdOB and main-sequence companions of the expected spectroscopic mass being ruled out for the X-ray-prototypical starsγCas andπAqr, leaving elusive WDs as the most likely companions, as well as a likely explanation of the X-rays. No low-mass main-sequence close companions were identified for the other stars. 
    more » « less
  2. Abstract Because many classical Be stars may owe their nature to mass and angular-momentum transfer in a close binary, the present masses, temperatures, and radii of their components are of high interest for comparison to stellar evolution models. Object κ Dra is a 61.5 day single-lined binary with a B6 IIIe primary. With the CHARA Array instruments MIRC/MIRC-X and MYSTIC, we detected the secondary at (approximately photospheric) flux ratios of 1.49% ± 0.10% and 1.63% ± 0.09% in the H and K band, respectively. From a large and diverse optical spectroscopic database, only the radial velocity curve of the Be star could be extracted. However, employing the parallaxes from Hipparcos and Gaia, which agree within their nominal 1 σ errors, we could derive the total mass and found component masses of 3.65 ± 0.48 and 0.426 ± 0.043 M ⊙ for the Be star and the companion, respectively. Previous cross-correlation of the observed FUV spectrum with O-type subdwarf (sdO) spectral model templates had not detected a companion belonging to the hot sdO population known from ∼20 earlier-type Be stars. Guided by our full 3D orbital solution, we found a strong cross-correlation signal for a stripped subdwarf B-type companion (FUV flux ratio of 2.3% ± 0.5%), enabling the first firm characterization of such a star and making κ Dra the first mid- to late-type Be star with a directly observed subdwarf companion. 
    more » « less
  3. Abstract Understanding the evolution of massive binary stars requires accurate estimates of their masses. This understanding is critically important because massive star evolution can potentially lead to gravitational-wave sources such as binary black holes or neutron stars. For Wolf–Rayet (WR) stars with optically thick stellar winds, their masses can only be determined with accurate inclination angle estimates from binary systems which have spectroscopic M sin i measurements. Orbitally phased polarization signals can encode the inclination angle of binary systems, where the WR winds act as scattering regions. We investigated four Wolf–Rayet + O star binary systems, WR 42, WR 79, WR 127, and WR 153, with publicly available phased polarization data to estimate their masses. To avoid the biases present in analytic models of polarization while retaining computational expediency, we used a Monte Carlo radiative-transfer model accurately emulated by a neural network. We used the emulated model to investigate the posterior distribution of the parameters of our four systems. Our mass estimates calculated from the estimated inclination angles put strong constraints on existing mass estimates for three of the systems, and disagree with the existing mass estimates for WR 153. We recommend a concerted effort to obtain polarization observations that can be used to estimate the masses of WR binary systems and increase our understanding of their evolutionary paths. 
    more » « less
  4. null (Ed.)
    ABSTRACT The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical interactions alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries in the coupled magnetohydrodynamics and direct N-body star cluster formation code torch. We compare simulations with, and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations, finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation, we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with mass ratios above the q ≥ 0.1 detection limit. Our simulations also indicate that dynamical interactions in the presence of gas during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller semimajor axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems, and systems formed dynamically in the presence of an initial population of binaries differ from those formed in simulations with single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the properties of binary star systems. 
    more » « less
  5. UV spectroscopy and spectropolarimetry hold the key to understanding certain aspects of massive stars that are largely inaccessible (or exceptionally difficult) with optical or longer wavelength observations. As we demonstrate, this is especially true for the rapidly-rotating Be and Bn stars, owing to their high temperatures, geometric asymmetries, binary properties, evolutionary history, as well as mass ejection and disks (in the case of Be stars). UV spectropolarimetric observations are extremely sensitive to the photospheric consequences of rapid rotation (i.e. oblateness, temperature, and surface gravity gradients), far beyond the reach of optical wavelengths. Our polarized radiative-transfer modelling predicts that with low-resolution UV spectropolarimetry covering 120-300 nm, and with a reasonable SNR, the inclination angle of a rapid rotator can be determined to within 5 degrees, and the rotation rate to within 1%. The origin of rapid rotation in Be/n stars can be explained by either single-star or binary evolution, but their relative importance is largely unknown. Some Be stars have hot sub-luminous (sdO) companions, which at an earlier phase transferred their envelope (and with it mass and angular momentum) to the present-day rapid rotator. Although sdO stars are small and relatively faint, their flux peaks in the UV making this the optimal observational wavelength regime. Through spectral modelling of a wide range of simulated Be/n+sdO configurations, we demonstrate that high-resolution high-signal-to-noise ratio UV spectroscopy can detect an sdO star even when ∼1,000 times fainter in the UV than its Be/n star companion. This degree of sensitivity is needed to more fully explore the parameter space of Be/n+sdO binaries, which so far has been limited to about a dozen systems with relatively luminous sdO stars. We suggest that a UV spectropolarimetric survey of Be/n stars is the next step forward in understanding this population. Such a dataset would, when combined with population synthesis models, allow for the determination of the relative importance of the possible evolutionary pathways traversed by these stars, which is also crucial for understanding their future evolution and fate. 
    more » « less