Heterogeneous self-assembly of III–V nanostructures on inert two-dimensional monolayer materials enables novel hybrid nanosystems with unique properties that can be exploited for low-cost and low-weight flexible optoelectronic and nanoelectronic device applications. Here, the pseudo-van der Waals epitaxy (vdWE) growth parameter space for heterogeneous integration of InAs nanowires (NWs) with continuous films of single layer graphene (SLG) via metalorganic chemical vapor deposition (MOCVD) is investigated. The length, diameter, and number density of NWs, as well as areal coverage of parasitic islands, are quantified as functions of key growth variables including growth temperature, V/III ratio, and total flow rate of metalorganic and hydride precursors. A compromise between self-assembly of high aspect ratio NWs comprising high number density arrays and simultaneous minimization of parasitic growth coverage is reached under a selected set of optimal growth conditions. Exploration of NW crystal structures formed under various growth conditions reveals that a characteristic polytypic and disordered lattice is invariant within the explored parameter space. A growth evolution study reveals a gradual reduction in both axial and radial growth rates within the explored timeframe for the optimal growth conditions, which is attributed to a supply-limited competitive growth regime. Two strategies are introduced for further growth optimization. Firstly, it is shown that the absence of a pre-growth in situ arsine surface treatment results in a reduction of parasitic island coverage by factor of ∼0.62, while NW aspect ratio and number densities are simultaneously enhanced. Secondly, the use of a two-step flow-modulated growth procedure allows for realization of dense fields of high aspect ratio InAs NWs. As a result of the applied studies and optimization of the growth parameter space, the highest reported axial growth rate of 840 nm min −1 and NW number density of ∼8.3 × 10 8 cm −2 for vdWE of high aspect ratio (>80) InAs NW arrays on graphitic surfaces are achieved. This work is intended to serve as a guide for vdWE of self-assembled III–V semiconductor NWs such as In-based ternary and quaternary alloys on functional two-dimensional monolayer materials, toward device applications in flexible optoelectronics and tandem-junction photovoltaics.
more »
« less
Mixed-dimensional InAs nanowire on layered molybdenum disulfide heterostructures via selective-area van der Waals epitaxy
Self-assembly of vertically aligned III–V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS 2 ) domains is reported for the first time. The MOCVD growth parameter space ( i.e. , V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS 2 micro-plates with one-to-one NW-to-MoS 2 domain placement. The introduction of a pre-growth poly- l -lysine surface treatment is highlighted as a necessary step for mitigation of InAs nucleation along the edges of triangular MoS 2 domains and for NW growth along the interior region of 2D micro-plates. Analysis of NW crystal structures formed under the optimal SA-vdWE condition revealed a disordered combination of wurtzite and zinc-blend phases. A transformation of the NW sidewall faceting structure is observed, resulting from simultaneous radial overgrowth during axial NW synthesis. A common lattice arrangement between axially-grown InAs NW core segments and MoS 2 domains is described as the epitaxial basis for vertical NW growth. A model is proposed for a common InAs/MoS 2 sub-lattice structure, consisting of three multiples of the cubic InAs unit cell along the [21̄1̄] direction, commensurately aligned with a 14-fold multiple of the Mo–Mo (or S–S) spacing along the [101̄0] direction of MoS 2 hexagonal lattice. The SA-vdWE growth mode described here enables controlled hybrid integration of mixed-dimensional III–V-on-2D heterostructures as novel nanosystems for applications in optoelectronics, nanoelectronics, and quantum enabling technologies.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10325437
- Date Published:
- Journal Name:
- Nanoscale Advances
- Volume:
- 3
- Issue:
- 10
- ISSN:
- 2516-0230
- Page Range / eLocation ID:
- 2802 to 2811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vertically-aligned, high aspect ratio In InAsyP1-y, InxAl1-xAs, and core-shell InAsP-InP nanowires (NWs) are grown directly on two-dimensional (2-D) monolayer graphene via seed-free pseudo-van der Waals epitaxy (vdWE), as reported here for the first time. Growth is achieved using metalorganic chemical vapor deposition (MOCVD). By altering growth temperature and molar flow ratio of precursors, the composition Of InAsyP1-y NWs can be tuned within the 1 ≤ y ≤ 0.8 range. Similarly, by tuning the group-III precursor flow rates, InxAl1-x As composition can be modified in the range. NW morphology and NW array number density variances are measured for different ternary compositions as functions of precursor flow rates and growth temperature.more » « less
-
LaPierre, Ray (Ed.)Abstract Recent advances in the growth of III-V semiconductor nanowires (NWs) hold great promise for nanoscale optoelectronic device applications. Recently, it was found that a small amount of nitrogen (N) incorporation in III-V semiconductor NWs can effectively red-shift their wavelength of operation and tailor their electronic properties for specific applications. However, understanding the impact of N incorporation on non-equilibrium charge carrier dynamics and transport in semiconducting NWs is critical in achieving efficient semiconducting NW devices. In this work, ultrafast optical pump-terahertz probe spectroscopy has been used to study non-equilibrium carrier dynamics and transport in Te-doped GaAsSb and dilute nitride GaAsSbN NWs, with the goal of correlating these results with electrical characterization of their equilibrium photo-response under bias and low-frequency noise characteristics. Nitrogen incorporation in GaAsSb NWs led to a significant increase in the carrier scattering rate, resulting in a severe reduction in carrier mobility. Carrier recombination lifetimes of 33 ± 1 picoseconds (ps) and 147 ± 3 ps in GaAsSbN and GaAsSb NWs, respectively, were measured. The reduction in the carrier lifetime and photoinduced optical conductivities are due to the presence of N-induced defects, leading to deterioration in the electrical and optical characteristics of dilute nitride NWs relative to the non-nitride NWs. Finally, we observed a very fast rise time of ~ 2 ps for both NW materials, directly impacting their potential use as high-speed photodetectors.more » « less
-
Abstract The phase transitions of two-dimensional (2D) materials are key to the operation of many devices with applications including energy storage and low power electronics. Nanoscale confinement in the form of reduced thickness can modulate the phase transitions of 2D materials both in their thermodynamics and kinetics. Here, using in situ Raman spectroscopy we demonstrate that reducing the thickness of MoS 2 below five layers slows the kinetics of the phase transition from 2H- to 1T′-MoS 2 induced by the electrochemical intercalation of lithium. We observe that the growth rate of 1T′ domains is suppressed in thin MoS 2 supported by SiO 2 , and attribute this growth suppression to increased interfacial effects as the thickness is reduced below 5 nm. The suppressed kinetics can be reversed by placing MoS 2 on a 2D hexagonal boron nitride ( h BN) support, which readily facilitates the release of strain induced by the phase transition. Additionally, we show that the irreversible conversion of intercalated 1T′-MoS 2 into Li 2 S and Mo is also thickness-dependent and the stability of 1T′-MoS 2 is significantly increased below five layers, requiring a much higher applied electrochemical potential to break down 1T′-MoS 2 into Li 2 S and Mo nanoclusters.more » « less
-
Abstract After the preparation of 2D electronic flat band (EFB) in van der Waals (vdW) superlattices, recent measurements suggest the existence of 1D electronic flat bands (1D‐EFBs) in twisted vdW bilayers. However, the realization of 1D‐EFBs is experimentally elusive in untwisted 2D layers, which is desired considering their fabrication and scalability. Herein, the discovery of 1D‐EFBs is reported in an untwisted in situ‐grown two atomic‐layer Bi(110) superlattice self‐aligned on an SnSe(001) substrate using scanning probe microscopy measurements and density functional theory calculations. While the Bi–Bi dimers of Bi zigzag (ZZ) chains are buckled, the epitaxial lattice mismatch between the Bi and SnSe layers induces two 1D buckling reversal regions (BRRs) extending along theZZdirection in each Bi(110)‐11 × 11 supercell. A series of 1D‐EFBs arises spatially following BRRs that isolate electronic states along the armchair (AC) direction and localize electrons in 1D extended states alongZZdue to quantum interference at a topological node. This work provides a generalized strategy for engineering 1D‐EFBs in utilizing lattice mismatch between untwisted rectangular vdW layers.more » « less
An official website of the United States government

