skip to main content


Title: Self-Assembled InAsP and lnAlAs Nanowires on Graphene Via Pseudo-Van Der Waals Epitaxy
Vertically-aligned, high aspect ratio In InAsyP1-y, InxAl1-xAs, and core-shell InAsP-InP nanowires (NWs) are grown directly on two-dimensional (2-D) monolayer graphene via seed-free pseudo-van der Waals epitaxy (vdWE), as reported here for the first time. Growth is achieved using metalorganic chemical vapor deposition (MOCVD). By altering growth temperature and molar flow ratio of precursors, the composition Of InAsyP1-y NWs can be tuned within the 1 ≤ y ≤ 0.8 range. Similarly, by tuning the group-III precursor flow rates, InxAl1-x As composition can be modified in the range. NW morphology and NW array number density variances are measured for different ternary compositions as functions of precursor flow rates and growth temperature.  more » « less
Award ID(s):
1665086
NSF-PAR ID:
10092176
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterogeneous self-assembly of III–V nanostructures on inert two-dimensional monolayer materials enables novel hybrid nanosystems with unique properties that can be exploited for low-cost and low-weight flexible optoelectronic and nanoelectronic device applications. Here, the pseudo-van der Waals epitaxy (vdWE) growth parameter space for heterogeneous integration of InAs nanowires (NWs) with continuous films of single layer graphene (SLG) via metalorganic chemical vapor deposition (MOCVD) is investigated. The length, diameter, and number density of NWs, as well as areal coverage of parasitic islands, are quantified as functions of key growth variables including growth temperature, V/III ratio, and total flow rate of metalorganic and hydride precursors. A compromise between self-assembly of high aspect ratio NWs comprising high number density arrays and simultaneous minimization of parasitic growth coverage is reached under a selected set of optimal growth conditions. Exploration of NW crystal structures formed under various growth conditions reveals that a characteristic polytypic and disordered lattice is invariant within the explored parameter space. A growth evolution study reveals a gradual reduction in both axial and radial growth rates within the explored timeframe for the optimal growth conditions, which is attributed to a supply-limited competitive growth regime. Two strategies are introduced for further growth optimization. Firstly, it is shown that the absence of a pre-growth in situ arsine surface treatment results in a reduction of parasitic island coverage by factor of ∼0.62, while NW aspect ratio and number densities are simultaneously enhanced. Secondly, the use of a two-step flow-modulated growth procedure allows for realization of dense fields of high aspect ratio InAs NWs. As a result of the applied studies and optimization of the growth parameter space, the highest reported axial growth rate of 840 nm min −1 and NW number density of ∼8.3 × 10 8 cm −2 for vdWE of high aspect ratio (>80) InAs NW arrays on graphitic surfaces are achieved. This work is intended to serve as a guide for vdWE of self-assembled III–V semiconductor NWs such as In-based ternary and quaternary alloys on functional two-dimensional monolayer materials, toward device applications in flexible optoelectronics and tandem-junction photovoltaics. 
    more » « less
  2. Self-assembly of vertically aligned III–V semiconductor nanowires (NWs) on two-dimensional (2D) van der Waals (vdW) nanomaterials allows for integration of novel mixed-dimensional nanosystems with unique properties for optoelectronic and nanoelectronic device applications. Here, selective-area vdW epitaxy (SA-vdWE) of InAs NWs on isolated 2D molybdenum disulfide (MoS 2 ) domains is reported for the first time. The MOCVD growth parameter space ( i.e. , V/III ratio, growth temperature, and total molar flow rates of metalorganic and hydride precursors) is explored to achieve pattern-free positioning of single NWs on isolated multi-layer MoS 2 micro-plates with one-to-one NW-to-MoS 2 domain placement. The introduction of a pre-growth poly- l -lysine surface treatment is highlighted as a necessary step for mitigation of InAs nucleation along the edges of triangular MoS 2 domains and for NW growth along the interior region of 2D micro-plates. Analysis of NW crystal structures formed under the optimal SA-vdWE condition revealed a disordered combination of wurtzite and zinc-blend phases. A transformation of the NW sidewall faceting structure is observed, resulting from simultaneous radial overgrowth during axial NW synthesis. A common lattice arrangement between axially-grown InAs NW core segments and MoS 2 domains is described as the epitaxial basis for vertical NW growth. A model is proposed for a common InAs/MoS 2 sub-lattice structure, consisting of three multiples of the cubic InAs unit cell along the [21̄1̄] direction, commensurately aligned with a 14-fold multiple of the Mo–Mo (or S–S) spacing along the [101̄0] direction of MoS 2 hexagonal lattice. The SA-vdWE growth mode described here enables controlled hybrid integration of mixed-dimensional III–V-on-2D heterostructures as novel nanosystems for applications in optoelectronics, nanoelectronics, and quantum enabling technologies. 
    more » « less
  3. Abstract

    This study presents the first report on patterned nanowires (NWs) of dilute nitride GaAsSbN on p-Si (111) substrates by self-catalyzed plasma-assisted molecular beam epitaxy. Patterned NW array with GaAsSbN of Sb composition of 3% as a stem provided the best yield of vertical NWs. Large bandgap tuning of ~ 75 meV, as ascertained from 4 K photoluminescence (PL), over a pitch length variation of 200–1200 nm has been demonstrated. Pitch-dependent axial and radial growth rates show a logistic sigmoidal growth trend different from those commonly observed in other patterned non-nitride III–V NWs. The sigmoidal fitting provides further insight into the PL spectral shift arising from differences in Sb and N incorporation from pitch induced variation in secondary fluxes. Results indicate that sigmoidal fitting can be a potent tool for designing patterned NW arrays of optimal pitch length for dilute nitrides and other highly mismatched alloys and heterostructures.

     
    more » « less
  4. This work reports a method of producing flexible cobalt nanowires (NWs) directly from the chemical conversion of bulk precursors at room temperature. Chemical reduction of Li 6 CoCl 8 produces a nanocomposite of Co and LiCl, of which the salt is subsequently removed. The dilute concentration of Co in the precursor combined with the anisotropic crystal structure of the hcp phase leads to 1D growth in the absence of any templates or additives. The Co NWs are shown to have high saturation magnetization (130.6 emu g −1 ). Our understanding of the NW formation mechanism points to new directions of scalable nanostructure generation. 
    more » « less
  5. Abstract This work evaluates the passivation efficacy of thermal atomic layer deposited (ALD) Al 2 O 3 dielectric layer on self-catalyzed GaAs 1- x Sb x nanowires (NWs) grown using molecular beam epitaxy. A detailed assessment of surface chemical composition and optical properties of Al 2 O 3 passivated NWs with and without prior sulfur treatment were studied and compared to as-grown samples using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature photoluminescence (PL) spectroscopy. The XPS measurements reveal that prior sulfur treatment followed by Al 2 O 3 ALD deposition abates III–V native oxides from the NW surface. However, the degradation in 4K-PL intensity by an order of magnitude observed for NWs with Al 2 O 3 shell layer compared to the as-grown NWs, irrespective of prior sulfur treatment, suggests the formation of defect states at the NW/dielectric interface contributing to non-radiative recombination centers. This is corroborated by the Raman spectral broadening of LO and TO Raman modes, increased background scattering, and redshift observed for Al 2 O 3 deposited NWs relative to the as-grown. Thus, our work seems to indicate the unsuitability of ALD deposited Al 2 O 3 as a passivation layer for GaAsSb NWs. 
    more » « less