Abstract BACKGROUNDKnoevenagel condensation is an important tool for building carbon–carbon (CC) bonds, especially when catalyzed by enzymes to enable a potentially high chemo‐, regio‐ and/or stereoselectivity. Although many Knoevenagel condensation reactions are carried out in aqueous solutions, insoluble hydrophobic substrates often lead to poor catalytic efficiencies. The use of water‐miscible organic solvents improves the substrate solubilization, but usually induces activity suppression or inactivation of enzymes. There is a great need to develop alternative solvents for both substrate dissolution and enzyme compatibility in CC bond formation reactions. RESULTSOur group previously developed dual‐functionalized water‐mimicking ionic liquids (ILs) for the activation and stabilization of hydrolases (e.g. lipase and protease). In the present study, we evaluated the Knoevenagel condensation of 4‐chlorobenzaldehyde with acetylacetone, and found that porcine pancreas lipase in water‐mimicking ILs carrying ammonium, imidazolium and benzimidazolium cations enabled higher reaction rates (up to 3.22 μmol min−1 g−1lipase) and better yields thantert‐butanol, glymes and [BMIM][Tf2N]. Interestingly, tertiary amide solvents such asN‐methyl‐2‐pyrrolidone (NMP),N,N‐dimethylformamide (DMF) andN,N‐dimethylacetamide (DMAc) led to 8.2‐ to 11.1‐fold increases in the initial rate (up to 35.66 μmol min−1 g−1lipase) when compared with dual‐functionalized ILs, which is likely due to some synergistic effect of these tertiary amides with the lipase. CONCLUSIONDual‐functionalized ILs based on ammonium, imidazolium and benzimidazolium cations improved Knoevenagel condensation reaction rates and yields when compared withtert‐butanol and glymes. Tertiary amides (NMP, DMF and DMAc) significantly increased the reaction rate. © 2024 The Authors.Journal of Chemical Technology and Biotechnologypublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
more »
« less
Development of Effective Lipase-Hybrid Nanoflowers Enriched with Carbon and Magnetic Nanomaterials for Biocatalytic Transformations
In the present study, hybrid nanoflowers (HNFs) based on copper (II) or manganese (II) ions were prepared by a simple method and used as nanosupports for the development of effective nanobiocatalysts through the immobilization of lipase B from Pseudozyma antarctica. The hybrid nanobiocatalysts were characterized by various techniques including scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The effect of the addition of carbon-based nanomaterials, namely graphene oxide and carbon nanotubes, as well as magnetic nanoparticles such as maghemite, on the structure, catalytic activity, and operational stability of the hybrid nanobiocatalysts was also investigated. In all cases, the addition of nanomaterials during the preparation of HNFs increased the catalytic activity and the operational stability of the immobilized biocatalyst. Lipase-based magnetic nanoflowers were effectively applied for the synthesis of tyrosol esters in non-aqueous media, such as organic solvents, ionic liquids, and environmental friendly deep eutectic solvents. In such media, the immobilized lipase preserved almost 100% of its initial activity after eight successive catalytic cycles, indicating that these hybrid magnetic nanoflowers can be applied for the development of efficient nanobiocatalytic systems.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10325565
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 9
- Issue:
- 6
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 808
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dispersing carbon nanomaterials in solvents is effective in transferring their significant mechanical and functional properties to polymers and nanocomposites. However, poor dispersion of carbon nanomaterials impedes exploiting their full potential in nanocomposites. Cellulose nanocrystals (CNCs) are promising for dispersing and stabilizing pristine carbon nanotubes (pCNTs) and graphene nanoplatelets (pGnP) in protic media without functionalization. Here, the underlying mechanisms at the molecular level are investigated between CNC and pCNT/pGnP that stabilize their dispersion in polar solvents. Based on the spectroscopy and microscopy characterization of CNCpCNT/pGnP and density functional theory (DFT) calculations, an additional intermolecular mechanism is proposed between CNC and pCNT/pGnP that forms carbonoxygen covalent bonds between hydroxyl end groups of CNCs and the defected sites of pCNTs/pGnPs preventing re‐agglomeration in polar solvents. This work's findings indicate that the CNC‐assisted process enables new capabilities in harnessing nanostructures at the molecular level and tailoring the performance of nanocomposites at higher length scales.more » « less
-
In this study, photocatalytic properties and in vitro cytotoxicity of 29 TiO 2 -based multi-component nanomaterials ( i.e. , hybrids of more than two composition types of nanoparticles) were evaluated using a combination of the experimental testing and supervised machine learning modeling. TiO 2 -based multi-component nanomaterials with metal clusters of silver, and their mixtures with gold, palladium, and platinum were successfully synthesized. Two activities, photocatalytic activity and cytotoxicity, were studied. A novel cheminformatic approach was developed and applied for the computational representation of the photocatalytic activity and cytotoxicity effect. In this approach, features of investigated TiO 2 -based hybrid nanomaterials were reflected by a series of novel additive descriptors for hybrid and hybrid nanostructures (denoted as “hybrid nanosctructure descriptors”). These descriptors are based on quantum chemical calculations and the Smoluchowski equation. The obtained experimental data and calculated hybrid-nanostructure descriptors were used to develop novel predictive Quantitative Structure–Activity Relationship computational models (called “nano-QSAR mix ”). The proposed modeling approach is an initial step in the understanding of the relationships between physicochemical properties of hybrid nanoparticles, their toxicity, and photochemical activity under UV-vis irradiation. Acquired knowledge supports the safe-by-design approaches relevant to the development of efficient hybrid nanomaterials with reduced hazardous effects.more » « less
-
Abstract Designing complex synthetic materials for enzyme immobilization could unlock the utility of biocatalysis in extreme environments. Inspired by biology, we investigate the use of random copolymer brushes as dynamic immobilization supports that enable supra-biological catalytic performance of immobilized enzymes. This is demonstrated by immobilizingBacillus subtilisLipase A on brushes doped with aromatic moieties, which can interact with the lipase through multiple non-covalent interactions. Incorporation of aromatic groups leads to a 50 °C increase in the optimal temperature of lipase, as well as a 50-fold enhancement in enzyme activity. Single-molecule FRET studies reveal that these supports act as biomimetic chaperones by promoting enzyme refolding and stabilizing the enzyme’s folded and catalytically active state. This effect is diminished when aromatic residues are mutated out, suggesting the importance of π-stacking and π-cation interactions for stabilization. Our results underscore how unexplored enzyme-support interactions may enable uncharted opportunities for using enzymes in industrial biotransformations.more » « less
-
Homogeneous molecular catalysts are valued for their reaction specificity but face challenges in manufacturing scale-up due to complexities in final product separation, catalyst recovery, and instability in the presence of water. Heterogenizing these molecular catalysts, by attachment to a solid support, could transform the practical utility of molecular catalysts, simplify catalyst separation and recovery, and prevent catalyst decomposition by impeding bimolecular catalyst interactions. Previous strategies to heterogenize molecular catalysts via ligand-first binding to supports have suffered from reduced catalytic activity and leaching (loss) of catalyst, especially in environmentally friendly solvents like water. Herein, we describe an approach in which molecular catalysts are first attached to a metal oxide support through acidic ligands and then “encapsulated” with a metal oxide layer via atomic layer deposition (ALD) to prevent molecular detachment from the surface. For this initial report, which is based upon the well-studied Suzuki carbon–carbon cross-coupling reaction, we demonstrate the ability to achieve catalytic performance using a non-noble metal molecular catalyst in high aqueous content solvents. The catalyst chosen exhibits limited catalytic reactivity under homogeneous conditions due to extremely short catalyst lifetimes, but when heterogenized and immobilized with an optimal ALD layer thickness product yields >90% can be obtained in primarily aqueous solutions. Catalyst characterization before and after ALD application and catalytic reaction is achieved with infrared, electron paramagnetic resonance, and X-ray spectroscopies.more » « less
An official website of the United States government

