skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unconditional Fock state generation using arbitrarily weak photonic nonlinearities
We present a mechanism that harnesses extremely weak Kerr-type nonlinearities in a single driven cavity to deterministically generate single-photon Fock states and more general photon-blockaded states. Our method is effective even for nonlinearities that are orders-of-magnitude smaller than photonic loss. It is also completely distinct from so-called unconventional photon blockade mechanisms, as the generated states are non-Gaussian, exhibit a sharp cutoff in their photon number distribution, and can be arbitrarily close to a single-photon Fock state. Our ideas require only standard linear and parametric drives and are hence compatible with a variety of different photonic platforms.  more » « less
Award ID(s):
2011854
PAR ID:
10325758
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
48
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photonic Fock states are the most basic quantum states of a radiation field, but arbitrary number states are still difficult to produce. Here we propose to use superradiant atoms in a chiral waveguide to generate multi-photon Fock states deterministically. We calculate the explicit forms of the output quantum photonic states and their correlation functions. We further establish the conditions for the output optical fields to approach the Fock states asymptotically. 
    more » « less
  2. Abstract Strong optical nonlinearities play a central role in realizing quantum photonic technologies. Exciton-polaritons, which result from the hybridization of material excitations and cavity photons, are an attractive candidate to realize such nonlinearities. While the interaction between ground state excitons generates a notable optical nonlinearity, the strength of such interactions is generally not sufficient to reach the regime of quantum nonlinear optics. Excited states, however, feature enhanced interactions and therefore hold promise for accessing the quantum domain of single-photon nonlinearities. Here we demonstrate the formation of exciton-polaritons using excited excitonic states in monolayer tungsten diselenide (WSe 2 ) embedded in a microcavity. The realized excited-state polaritons exhibit an enhanced nonlinear response ∼ $${g}_{{pol}-{pol}}^{2s} \sim 46.4\pm 13.9\,\mu {eV}\mu {m}^{2}$$ g p o l − p o l 2 s ~ 46.4 ± 13.9 μ e V μ m 2 which is ∼4.6 times that for the ground-state exciton. The demonstration of enhanced nonlinear response from excited exciton-polaritons presents the potential of generating strong exciton-polariton interactions, a necessary building block for solid-state quantum photonic technologies. 
    more » « less
  3. Photonic integrated circuits with second-order (χ(2)) nonlinearities are rapidly scaling to remarkably low powers. At this time, state-of-the-art devices achieve saturated nonlinear interactions with thousands of photons when driven by continuous-wave lasers, and further reductions in these energy requirements enabled by the use of ultrafast pulses may soon push nonlinear optics into the realm of single-photon nonlinearities. This tutorial reviews these recent developments in ultrafast nonlinear photonics, discusses design strategies for realizing few-photon nonlinear interactions, and presents a unified treatment of ultrafast quantum nonlinear optics using a framework that smoothly interpolates from classical behaviors to the few-photon scale. These emerging platforms for quantum optics fundamentally differ from typical realizations in cavity quantum electrodynamics due to the large number of coupled optical modes. Classically, multimode behaviors have been well studied in nonlinear optics, with famous examples including soliton formation and supercontinuum generation. In contrast, multimode quantum systems exhibit a far greater variety of behaviors, and yet closed-form solutions are even sparser than their classical counterparts. In developing a framework for ultrafast quantum optics, we identify what behaviors carry over from classical to quantum devices, what intuition must be abandoned, and what new opportunities exist at the intersection of ultrafast and quantum nonlinear optics. Although this article focuses on establishing connections between the classical and quantum behaviors of devices withχ(2)nonlinearities, the frameworks developed here are general and are readily extended to the description of dynamical processes based on third-orderχ(3)nonlinearities. 
    more » « less
  4. The development of useful photon-photon interactions can trigger numerous breakthroughs in quantum information science, however, this has remained a considerable challenge spanning several decades. Here, we demonstrate the first room-temperature implementation of large phase shifts (≈π) on a single-photon level probe pulse (1.5μs) triggered by a simultaneously propagating few-photon-level signal field. This process is mediated by Rb87 vapor in a double-Λ atomic configuration. We use homodyne tomography to obtain the quadrature statistics of the phase-shifted quantum fields and perform maximum-likelihood estimation to reconstruct their quantum state in the Fock state basis. For the probe field, we have observed input-output fidelities higher than 90% for phase-shifted output states, and high overlap (over 90%) with a theoretically perfect coherent state. Our noise-free, four-wave-mixing-mediated photon-photon interface is a key milestone toward developing quantum logic and nondemolition photon detection using schemes such as coherent photon conversion. 
    more » « less
  5. Quantum repeaters are nodes in a quantum communication network that allow reliable transmission of entanglement over large distances. It was recently shown that highly entangled photons in so-called graph states can be used for all-photonic quantum repeaters, which require substantially fewer resources compared to atomic-memory-based repeaters. However, standard approaches to building multiphoton entangled states through pairwise probabilistic entanglement generation severely limit the size of the state that can be created. Here, we present a protocol for the deterministic generation of large photonic repeater states using quantum emitters such as semiconductor quantum dots and defect centers in solids. We show that arbitrarily large repeater states can be generated using only one emitter coupled to a single qubit, potentially reducing the necessary number of photon sources by many orders of magnitude. Our protocol includes a built-in redundancy, which makes it resilient to photon loss. 
    more » « less