skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Endoscopic decompositions and the Hausel–Thaddeus conjecture
Abstract We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning $$\mathrm {SL}_n$$ - and $$\mathrm {PGL}_n$$ -Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable $$\mathrm {SL}_n$$ -Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via p -adic integration. Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler.  more » « less
Award ID(s):
2134315 2000726
PAR ID:
10325820
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Forum of Mathematics, Pi
Volume:
9
ISSN:
2050-5086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We compute the supports of the perverse cohomology sheaves of the Hitchin fibration for GL n {\mathrm{GL}_{n}}over the locus of reduced spectral curves. In contrast to the case of meromorphic Higgs fields we find additional supports at the loci of reducible spectral curves. Their contribution to the global cohomology is governed by a finite twist of Hitchin fibrations for Levi subgroups. The corresponding summands give non-trivial contributions to the cohomology of the moduli spaces for every n 2 {n\geq{2}}. A key ingredient is a restriction result for intersection cohomology sheaves that allows us to compare the fibration to the one defined over versal deformations of spectral curves. 
    more » « less
  2. We present an overview of some recent applications of Higgs bundles and the Hitchin fibration. 
    more » « less
  3. We study the topology of Hitchin fibrations via abelian surfaces. We establish the P=W conjecture for genus 2 2 curves and arbitrary rank. In higher genus and arbitrary rank, we prove that P=W holds for the subalgebra of cohomology generated by even tautological classes. Furthermore, we show that all tautological generators lie in the correct pieces of the perverse filtration as predicted by the P=W conjecture. In combination with recent work of Mellit, this reduces the full conjecture to the multiplicativity of the perverse filtration. Our main technique is to study the Hitchin fibration as a degeneration of the Hilbert–Chow morphism associated with the moduli space of certain torsion sheaves on an abelian surface, where the symmetries induced by Markman’s monodromy operators play a crucial role. 
    more » « less
  4. null (Ed.)
    Abstract In this paper we determine the spectral data parametrizing Higgs bundles in a generic fiber of the Hitchin map for the case where the structure group is the special Clifford group with fixed Clifford norm. These are spin and “twisted” spin Higgs bundles. The method used relates variations in spectral data with respect to the Hecke transformations for orthogonal bundles introduced by Abe. The explicit description also recovers a result from the geometric Langlands program, which states that the fibers of the Hitchin map are the dual abelian varieties to the corresponding fibers of the moduli spaces of projective orthogonal Higgs bundles (in the even case) and projective symplectic Higgs bundles (in the odd case). 
    more » « less
  5. Abstract Following the work of Mazzeo–Swoboda–Weiß–Witt [Duke Math. J. 165 (2016), 2227–2271] and Mochizuki [J. Topol. 9 (2016), 1021–1073], there is a map$$\overline{\Xi }$$between the algebraic compactification of the Dolbeault moduli space of$${\rm SL}(2,\mathbb{C})$$Higgs bundles on a smooth projective curve coming from the$$\mathbb{C}^\ast$$action and the analytic compactification of Hitchin’s moduli space of solutions to the$$\mathsf{SU}(2)$$self-duality equations on a Riemann surface obtained by adding solutions to the decoupled equations, known as ‘limiting configurations’. This map extends the classical Kobayashi–Hitchin correspondence. The main result that this article will show is that$$\overline{\Xi }$$fails to be continuous at the boundary over a certain subset of the discriminant locus of the Hitchin fibration. 
    more » « less