skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The algebraic and analytic compactifications of the Hitchin moduli space
Abstract Following the work of Mazzeo–Swoboda–Weiß–Witt [Duke Math. J. 165 (2016), 2227–2271] and Mochizuki [J. Topol. 9 (2016), 1021–1073], there is a map$$\overline{\Xi }$$between the algebraic compactification of the Dolbeault moduli space of$${\rm SL}(2,\mathbb{C})$$Higgs bundles on a smooth projective curve coming from the$$\mathbb{C}^\ast$$action and the analytic compactification of Hitchin’s moduli space of solutions to the$$\mathsf{SU}(2)$$self-duality equations on a Riemann surface obtained by adding solutions to the decoupled equations, known as ‘limiting configurations’. This map extends the classical Kobayashi–Hitchin correspondence. The main result that this article will show is that$$\overline{\Xi }$$fails to be continuous at the boundary over a certain subset of the discriminant locus of the Hitchin fibration.  more » « less
Award ID(s):
2204346
PAR ID:
10617300
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Moduli
Volume:
1
ISSN:
2949-7647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient$${\mathcal {M}}^{\operatorname {GIT}}$$, as a Baily–Borel compactification of a ball quotient$${(\mathcal {B}_4/\Gamma )^*}$$, and as a compactifiedK-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup$${\mathcal {M}}^{\operatorname {K}}\rightarrow {\mathcal {M}}^{\operatorname {GIT}}$$, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification$${\overline {\mathcal {B}_4/\Gamma }}\rightarrow {(\mathcal {B}_4/\Gamma )^*}$$. The spaces$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in factnotthe case. Indeed, we show the more refined statement that$${\mathcal {M}}^{\operatorname {K}}$$and$${\overline {\mathcal {B}_4/\Gamma }}$$are equivalent in the Grothendieck ring, but notK-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients. 
    more » « less
  2. Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials. 
    more » « less
  3. Abstract For$$g\ge 2$$and$$n\ge 0$$, let$$\mathcal {H}_{g,n}\subset \mathcal {M}_{g,n}$$denote the complex moduli stack ofn-marked smooth hyperelliptic curves of genusg. A normal crossings compactification of this space is provided by the theory of pointed admissible$$\mathbb {Z}/2\mathbb {Z}$$-covers. We explicitly determine the resulting dual complex, and we use this to define a graph complex which computes the weight zero compactly supported cohomology of$$\mathcal {H}_{g, n}$$. Using this graph complex, we give a sum-over-graphs formula for the$$S_n$$-equivariant weight zero compactly supported Euler characteristic of$$\mathcal {H}_{g, n}$$. This formula allows for the computer-aided calculation, for each$$g\le 7$$, of the generating function$$\mathsf {h}_g$$for these equivariant Euler characteristics for alln. More generally, we determine the dual complex of the boundary in any moduli space of pointed admissibleG-covers of genus zero curves, whenGis abelian, as a symmetric$$\Delta $$-complex. We use these complexes to generalize our formula for$$\mathsf {h}_g$$to moduli spaces ofn-pointed smooth abelian covers of genus zero curves. 
    more » « less
  4. Abstract We prove that the rational cohomology group$$H^{11}(\overline {\mathcal {M}}_{g,n})$$vanishes unless$$g = 1$$and$$n \geq 11$$. We show furthermore that$$H^k(\overline {\mathcal {M}}_{g,n})$$is pure Hodge–Tate for all even$$k \leq 12$$and deduce that$$\# \overline {\mathcal {M}}_{g,n}(\mathbb {F}_q)$$is surprisingly well approximated by a polynomial inq. In addition, we use$$H^{11}(\overline {\mathcal {M}}_{1,11})$$and its image under Gysin push-forward for tautological maps to produce many new examples of moduli spaces of stable curves with nonvanishing odd cohomology and nontautological algebraic cycle classes in Chow cohomology. 
    more » « less
  5. Abstract We study collections of subrings of$$H^*({\overline {\mathcal {M}}}_{g,n})$$that are closed under the tautological operations that map cohomology classes on moduli spaces of smaller dimension to those on moduli spaces of larger dimension and contain the tautological subrings. Such extensions of tautological rings are well-suited for inductive arguments and flexible enough for a wide range of applications. In particular, we confirm predictions of Chenevier and Lannes for the$$\ell $$-adic Galois representations and Hodge structures that appear in$$H^k({\overline {\mathcal {M}}}_{g,n})$$for$$k = 13$$,$$14$$and$$15$$. We also show that$$H^4({\overline {\mathcal {M}}}_{g,n})$$is generated by tautological classes for allgandn, confirming a prediction of Arbarello and Cornalba from the 1990s. In order to establish the final base cases needed for the inductive proofs of our main results, we use Mukai’s construction of canonically embedded pentagonal curves of genus 7 as linear sections of an orthogonal Grassmannian and a decomposition of the diagonal to show that the pure weight cohomology of$${\mathcal {M}}_{7,n}$$is generated by algebraic cycle classes, for$$n \leq 3$$. 
    more » « less