skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Second-order stabilized semi-implicit energy stable schemes for bubble assemblies in binary and ternary systems

In this paper, we propose some second-order stabilized semi-implicit methods for solving the Allen-Cahn-Ohta-Kawasaki and the Allen-Cahn-Ohta-Nakazawa equations. In the numerical methods, some nonlocal linear stabilizing terms are introduced and treated implicitly with other linear terms, while other nonlinear and nonlocal terms are treated explicitly. We consider two different forms of such stabilizers and compare the difference regarding the energy stability. The spatial discretization is performed by the Fourier collocation method with FFT-based fast implementations. Numerically, we verify the second order temporal convergence rate of the proposed schemes. In both binary and ternary systems, the coarsening dynamics is visualized as bubble assemblies in hexagonal or square patterns.

 
more » « less
Award ID(s):
2142500
PAR ID:
10325843
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Discrete & Continuous Dynamical Systems - B
Volume:
0
Issue:
0
ISSN:
1531-3492
Page Range / eLocation ID:
0
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Adaptive time stepping methods for metastable dynamics of the Allen–Cahn and Cahn–Hilliard equations are investigated in the spatially continuous, semi-discrete setting. We analyse the performance of a number of first and second order methods, formally predicting step sizes required to satisfy specified local truncation error $$\sigma $$ σ in the limit of small length scale parameter $$\epsilon \rightarrow 0$$ ϵ → 0 during meta-stable dynamics. The formal predictions are made under stability assumptions that include the preservation of the asymptotic structure of the diffuse interface, a concept we call profile fidelity. In this setting, definite statements about the relative behaviour of time stepping methods can be made. Some methods, including all so-called energy stable methods but also some fully implicit methods, require asymptotically more time steps than others. The formal analysis is confirmed in computational studies. We observe that some provably energy stable methods popular in the literature perform worse than some more standard schemes. We show further that when Backward Euler is applied to meta-stable Allen–Cahn dynamics, the energy decay and profile fidelity properties for these discretizations are preserved for much larger time steps than previous analysis would suggest. The results are established asymptotically for general interfaces, with a rigorous proof for radial interfaces. It is shown analytically and computationally that for most reaction terms, Eyre type time stepping performs asymptotically worse due to loss of profile fidelity. 
    more » « less
  2. TheIsing modelof statistical physics has served as a keystone example of phase transitions, thermodynamic limits, scaling laws, and many other phenomena and mathematical methods. We introduce and explore anIsing game, a variant of the Ising model that features competing agents influencing the behavior of the spins. With long-range interactions, we consider a mean-field limit resulting in a nonlocal potential game at the mesoscopic scale. This game exhibits a phase transition and multiple constant Nash-equilibria in the supercritical regime. Our analysis focuses on a sharp interface limit for which potential minimizing solutions to the Ising game concentrate on two of the constant Nash-equilibria. We show that the mesoscopic problem can be recast as a mixed local/nonlocal space-time Allen-Cahn type minimization problem. We prove, using a Γ-convergence argument, that the limiting interface minimizes a space-time anisotropic perimeter type energy functional. This macroscopic scale problem could also be viewed as a problem of optimal control of interface motion. Sharp interface limits of Allen-Cahn type functionals have been well studied. We build on that literature with new techniques to handle a mixture of local derivative terms and nonlocal interactions. The boundary conditions imposed by the game theoretic considerations also appear as novel terms and require special treatment.

     
    more » « less
  3. Abstract

    We develop two totally decoupled, linear and second‐order accurate numerical methods that are unconditionally energy stable for solving the Cahn–Hilliard–Darcy equations for two phase flows in porous media or in a Hele‐Shaw cell. The implicit‐explicit Crank–Nicolson leapfrog method is employed for the discretization of the Cahn–Hiliard equation to obtain linear schemes. Furthermore the artificial compression technique and pressure correction methods are utilized, respectively, so that the Cahn–Hiliard equation and the update of the Darcy pressure can be solved independently. We establish unconditionally long time stability of the schemes. Ample numerical experiments are performed to demonstrate the accuracy and robustness of the numerical methods, including simulations of the Rayleigh–Taylor instability, the Saffman–Taylor instability (fingering phenomenon).

     
    more » « less
  4. Abstract

    The anisotropic phase‐field dendritic crystal growth model is a highly nonlinear system that couples the anisotropic Allen–Cahn equation and the thermal equation together. Due to the high anisotropy and nonlinear couplings in the system, how to develop an accurate and efficient, especially a fully decoupled scheme, has always been a challenging problem. To solve the challenge, in this article, we construct a novel fully decoupled numerical scheme which is also linear, energy stable, and second‐order time accurate. The key idea to realize the full decoupling structure is to introduce an ordinary differential equation to deal with the nonlinear coupling terms satisfying the so‐called “zero‐energy‐contribution” property. This scheme is very effective and easy to implement since only a few fully decoupled elliptic equations with constant coefficients need to be solved at each time step. We rigorously prove the solvability of each step and the unconditional energy stability, and perform a large number of numerical simulations in 2D and 3D to demonstrate its stability and accuracy numerically.

     
    more » « less
  5. In this paper, we consider numerical approximations for a dendritic solidification phase field model with melt convection in the liquid phase, which is a highly nonlinear system that couples the anisotropic Allen-Cahn type equation, the heat equation, and the weighted Navier-Stokes equations together. We first reformulate the model into a form which is suitable for numerical approximations and establish the energy dissipative law. Then, we develop a linear, decoupled, and unconditionally energy stable numerical scheme by combining the modified projection scheme for the Navier-Stokes equations, the Invariant Energy Quadratization approach for the nonlinear anisotropic potential, and some subtle explicit-implicit treatments for nonlinear coupling terms. Stability analysis and various numerical simulations are presented. 
    more » « less