skip to main content


Title: Large Signal Response of AlN/GaN/AlN HEMTs at 30 GHz
Award ID(s):
1719875
NSF-PAR ID:
10325888
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 Device Research Conference (DRC)
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to its high breakdown electric field, the ultra-wide bandgap semiconductor AlGaN has garnered much attention recently as a promising channel material for next-generation high electron mobility transistors (HEMTs). A comprehensive experimental study of the effects of Al composition x on the transport and structural properties is lacking. We report the charge control and transport properties of polarization-induced 2D electron gases (2DEGs) in strained AlGaN quantum well channels in molecular-beam-epitaxy-grown AlN/Al x Ga 1− x N/AlN double heterostructures by systematically varying the Al content from x = 0 (GaN) to x = 0.74, spanning energy bandgaps of the conducting HEMT channels from 3.49 to 4.9 eV measured by photoluminescence. This results in a tunable 2DEG density from 0 to 3.7 × 10 13 cm 2 . The room temperature mobilities of x ≥ 0.25 AlGaN channel HEMTs were limited by alloy disorder scattering to below 50 cm 2 /(V.s) for these 2DEG densities, leaving ample room for further heterostructure design improvements to boost mobilities. A characteristic alloy fluctuation energy of [Formula: see text] eV for electron scattering in AlGaN alloy is estimated based on the temperature dependent electron transport experiments. 
    more » « less
  2.  
    more » « less