skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distractor–distractor interactions in visual search for oriented targets explain the increased difficulty observed in nonlinearly separable conditions.
Award ID(s):
1921735
PAR ID:
10325920
Author(s) / Creator(s):
 ; ; ;
Date Published:
Journal Name:
Journal of Experimental Psychology: Human Perception and Performance
Volume:
47
Issue:
9
ISSN:
0096-1523
Page Range / eLocation ID:
1274 to 1297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on selective attention has largely focused on the enhancement of behaviorally important information, with less focus on the suppression of distracting information. Enhancement and suppression can operate through a push-pull relationship attributable to competitive interactions among neural populations. There has been considerable debate, however, regarding (1) whether suppression can be voluntarily deployed, independent of enhancement, and (2) whether voluntary deployment of suppression is associated with neural processes occurring prior to the distractor onset. Here, we investigated the interplay between pre- and post-distractor neural processes, while male and female human subjects performed a visual search task with a cue that indicated the location of an upcoming distractor. We utilized two established EEG markers of suppression: the distractor positivity (PD) and alpha power (~815 Hz). The PDa component of event-related potentialshas been linked with successful distractor suppression, and increased alpha power has been linked with attenuated sensory processing. Cueing the location of an upcoming distractor speeded responses and led to an earlier PD, consistent with earlier suppression due to strategic use of a spatial cue. In comparison, higher predistractor alpha power contralateral to distractors led to a later PD, consistent with later suppression. Lower alpha power contralateral to distractors instead led to distractor-related attentional capture. Lateralization of alpha power was not linked to the spatial cue. This observation, combined with differences in the timing of suppressionas indexed by earlier and later PDcomponentsdemonstrates that cue-related, voluntary suppression can occur separate from alpha-related gating of sensory processing. 
    more » « less
  2. Abstract It has been suggested that the visual system samples attended information rhythmically. Does rhythmic sampling also apply to distracting information? How do attended information and distracting information compete temporally for neural representations? We recorded electroencephalography from participants who detected instances of coherent motion in a random dot kinematogram (RDK; the target stimulus), overlayed on different categories (pleasant, neutral, and unpleasant) of affective images from the International Affective System (IAPS) (the distractor). The moving dots were flickered at 4.29 Hz whereas the IAPS pictures were flickered at 6 Hz. The time course of spectral power at 4.29 Hz (dot response) was taken to index the temporal dynamics of target processing. The spatial pattern of the power at 6 Hz was similarly extracted and subjected to a MVPA decoding analysis to index the temporal dynamics of processing pleasant, neutral, or unpleasant distractor pictures. We found that (1) both target processing and distractor processing exhibited rhythmicity at ∼1 Hz and (2) the phase difference between the two rhythmic time courses were related to task performance, i.e., relative phase closer to π predicted a higher rate of coherent motion detection whereas relative phase closer to 0 predicted a lower rate of coherent motion detection. These results suggest that (1) in a target-distractor scenario, both attended and distracting information were sampled rhythmically and (2) the more target sampling and distractor sampling were separated in time within a sampling cycle, the less distraction effects were observed, both at the neural and the behavioral level. 
    more » « less
  3. Abstract There has been a long-lasting debate about whether salient stimuli, such as uniquely colored objects, have the ability to automatically distract us. To resolve this debate, it has been suggested that salient stimuli do attract attention but that they can be suppressed to prevent distraction. Some research supporting this viewpoint has focused on a newly discovered ERP component called the distractor positivity (PD), which is thought to measure an inhibitory attentional process. This collaborative review summarizes previous research relying on this component with a specific emphasis on how the PD has been used to understand the ability to ignore distracting stimuli. In particular, we outline how the PD component has been used to gain theoretical insights about how search strategy and learning can influence distraction. We also review alternative accounts of the cognitive processes indexed by the PD component. Ultimately, we conclude that the PD component is a useful tool for understanding inhibitory processes related to distraction and may prove to be useful in other areas of study related to cognitive control. 
    more » « less