skip to main content


Title: Ability of Lewis Acids with Shallow σ-Holes to Engage in Chalcogen Bonds in Different Environments
Molecules of the type XYT = Ch (T = C, Si, Ge; Ch = S, Se; X,Y = H, CH3, Cl, Br, I) contain a σ-hole along the T = Ch bond extension. This hole can engage with the N lone pair of NCH and NCCH3 so as to form a chalcogen bond. In the case of T = C, these bonds are rather weak, less than 3 kcal/mol, and are slightly weakened in acetone or water. They owe their stability to attractive electrostatic energy, supplemented by dispersion, and a much smaller polarization term. Immersion in solvent reverses the electrostatic interaction to repulsive, while amplifying the polarization energy. The σ-holes are smaller for T = Si and Ge, even negative in many cases. These Lewis acids can nonetheless engage in a weak chalcogen bond. This bond owes its stability to dispersion in the gas phase, but it is polarization that dominates in solution.  more » « less
Award ID(s):
1954310
NSF-PAR ID:
10326170
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
21
ISSN:
1420-3049
Page Range / eLocation ID:
6394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The halogen bond formed by a series of Lewis acids TF 3 X (T = C, Si, Ge, Sn, Pb; X = Cl, Br, I) with NH 3 is studied by quantum chemical calculations. The interaction energy is closely mimicked by the depth of the σ-hole on the X atom as well as the full electrostatic energy. There is a first trend by which the hole is deepened if the T atom to which X is attached becomes more electron-withdrawing: C > Si > Ge > Sn > Pb. On the other hand, larger more polarizable T atoms are better able to transmit the electron-withdrawing power of the F substituents. The combination of these two opposing factors leaves PbF 3 X forming the strongest XBs, followed by CF 3 X, with SiF 3 X engaging in the weakest bonds. The charge transfer from the NH 3 lone pair into the σ*(TX) antibonding orbital tends to elongate the covalent TX bond, and this force is largest for the heavier X and T atoms. On the other hand, the contraction of this bond deepens the σ-hole at the X atom, which would enhance both the electrostatic component and the full interaction energy. This bond-shortening effect is greatest for the lighter X atoms. The combination of these two opposing forces leaves the T–X bond contracting for X = Cl and Br, but lengthening for I. 
    more » « less
  2. The π-hole above the plane of the X 2 T′Y molecule (T′ = Si, Ge, Sn; X = F, Cl, H; Y = O, S) was allowed to interact with the TH hydride of TH(CH 3 ) 3 (T = Si, Ge, Sn). The resulting TH⋯T′ tetrel bond is quite strong, with interaction energies exceeding 30 kcal mol −1 . F 2 T′O engages in the strongest such bonds, as compared to F 2 T′S, Cl 2 T′O, or Cl 2 T′S. The bond weakens as T′ grows larger as in Si > Ge > Sn, despite the opposite trend in the depth of the π-hole. The reverse pattern of stronger tetrel bond with larger T is observed for the Lewis base TH(CH 3 ) 3 , even though the minimum in the electrostatic potential around the H is nearly independent of T. The TH⋯T′ arrangement is nonlinear which can be understood on the basis of the positions of the extrema in the molecular electrostatic potentials of the monomers. The tetrel bond is weakened when H 2 O forms an O⋯T′ tetrel bond with the second π-hole of F 2 T′O, and strengthened if H 2 O participates in an OH⋯O H-bond. 
    more » « less
  3. Abstract

    The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2(Z=CO, N2, and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3molecule (X=H, F, and CH3), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2and BH(CNH)2, and their fluorosubstituted analogues BF(CO)2and BF(CNH)2, engage in a typical noncovalent bond with B(CH3)3and BF3, with interaction energies in the 3–8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26–44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3is added to BH(CO)2, BH(CNH)2, BH(N2)2, and BF(CO)2, or in the complexes of BH(N2)2with B(CH3)3and BF3. The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.

     
    more » « less
  4. The halogen bond is a class of non-covalent interaction that has attracted considerable attention recently. A widespread theory for describing them is the σ-hole concept, which predicts that the strength of the interaction is proportional to the size of the σ-hole, a region of positive electrostatic potential opposite a σ bond. Previous work shows that in the case of CX 3 I, with X equal to F, Cl, Br, and I, the σ-hole trend is exactly opposite to the trend in binding energy with common electron pair donors. Using energy decomposition analysis (EDA) applied to a potential energy scan as well as the recent adiabatic EDA technique, we show that the observed trend is a result of charge transfer. Therefore a picture of the halogen bond that excludes charge transfer cannot be complete, and permanent and induced electrostatics do not always provide the dominant stabilizing contributions to halogen bonds. Overall, three universally attractive factors, polarization, dispersion and charge transfer, together with permanent electrostatics, which is usually attractive, drive halogen bonding, against Pauli repulsion. 
    more » « less
  5. null (Ed.)
    Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations. 
    more » « less