There has been growing evidence that flipped teaching (FT) can increase student engagement. Traditional lecture-based teaching (TT) method was compared with FT and FT combined with retrieval practice (FTR) in a 400-level Exercise Physiology course over eight semesters. In the FT format, lecture content was assigned for students to prepare before class along with an online quiz. During class, the assigned content and quiz questions were reviewed, and a team-based learning (TBL) activity was conducted. Students found FT implementation three times a week (FT3) to be overwhelming, which led to reconfiguration of the FT design to minimize the quiz and TBL sessions to one per week. Subsequently, FT was combined with retrieval exercises (FTR), which involved recalling information, thus promoting retention. The students in the FTR format were given weekly quizzes in class, where no notes were allowed, which affected their quiz grade negatively compared with FT ( P < 0.0001). Again, no resources were permitted during FTR’s TBL sessions. When exam scores were compared with TT, student performance was significantly greater ( P < 0.001) with the FT and FTR methods, suggesting these methods are superior to TT. While both male and female students benefited from FT and FTRmore »
Comparison of Student Outcomes and Evaluations in Hybrid Versus Face-to-Face Anatomy and Physiology I Courses
In this study, two sections of undergraduate Introductory Anatomy and
Physiology taught in the traditional face-to-face format (n = 58) was compared to two hybrid classes (n = 38) using the flipped-classroom model
taught by the same instructor. Formative and summative examination scores
were compared to determine the effect of the different learning methods. Our
results revealed no significant difference between the mean scores of summative examinations and between the traditional and hybrid classes (p > 0.05).
Of five quizzes administered, students taught in the traditional format scored
significantly higher in only one of five quizzes. In addition, comparison of
in-class laboratory examination scores showed no difference (P > 0.05) in
three out of four. However, student evaluations of the hybrid classes were
more positive as determined by end-of-course evaluations (4.54 versus 2.9
on a 1–5 Likert scale). This is the first study that compares a hybrid versus
a traditional science course at a historically black college or university. We
conclude that comparison of student outcomes in traditional versus hybrid
Anatomy and Physiology I classes were similar. At a time when all institutions of higher learning have adopted online learning and distance learning
due to the COVID-19 pandemic, this is a timely comparison
- Editors:
- Dr David Wojnowski
- Award ID(s):
- 1900966
- Publication Date:
- NSF-PAR ID:
- 10326212
- Journal Name:
- Journal of college science teaching
- Volume:
- Vol. 51
- Issue:
- 1
- Page Range or eLocation-ID:
- 58-66
- ISSN:
- 0047-231X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Community colleges provide an important pathway for many prospective engineering graduates, especially those from traditionally underrepresented groups. However, due to a lack of facilities, resources, student demand and/or local faculty expertise, the breadth and frequency of engineering course offerings is severely restricted at many community colleges. This in turn presents challenges for students trying to maximize their transfer eligibility and preparedness. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of a comprehensive lower-division engineering curriculum, even at small-to-medium sized community colleges. This was accomplished by developing resources and teaching strategies that could be employed in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the iterative development, testing, and refining of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. This course is required as part of recently adopted statewide model associate degree curricula for transfer into Civil, Mechanical, Aerospace, and Manufacturing engineering bachelor’s degree programs at California State Universities. However, offering such amore »
-
Introduction: Inquiry-based learning is vital to the engineering design process, and most crucially in the laboratory and hands-on settings. Through the model of inquiry-based design, student teams are able to formulate critical inputs to the design process and develop a stronger and more relevant understanding of theoretical principles and their applications. In the junior-level Biotransport laboratory course at Purdue University’s Weldon School of BME, the curriculum utilizes the engineering design process to guide students through three (3) different modules covering different Biotransport phenomena (diffusivity, mass transport, and heat transfer). Students are required to research, conceptualize, and generate hypotheses around a module prompt. Students design, execute, and analyze their own experimental setups to test the hypotheses within an autodidactic peer-learning structure. Methods: A multi-year study was completed spanning from 2014 to 2016, assessing students’ end of course evaluations. With an integration of the flipped lecture into the lab being first implemented in 2015 (prior to 2015, the flipped lecture was a stand-alone course offered outside of the lab sections), the data presented here offers a comparison of student evaluations between these two course structures. Per the student response rates, the sample size for each year was: n=81 (2016); n=60 (2015); n=48more »
-
A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of themore »
-
Online modes of teaching and learning have gained increased attention following the COVID-19 pandemic, resulting in education delivery trends likely to continue for the foreseeable future. It is therefore critical to understand the implications for student learning outcomes and their interest in or affinity towards the subject, particularly in water science classes, where educators have traditionally employed hands-on outdoor activities that are difficult to replicate online. In this study, we share our experiences adapting a field-based laboratory activity on groundwater to accommodate more than 700 students in our largest-enrollment general education course during the pandemic. As part of our adaptation strategy, we offered two versions of the same exercise, one in-person at the Mirror Lake Water Science Learning Laboratory, located on Ohio State University’s main campus, and one online. Although outdoor lab facilities have been used by universities since at least the 1970s, this research is novel in that 1) it considers not only student achievement but also affinity for the subject, 2) it is the first of its kind on The Ohio State University’s main campus, and 3) it was conducted during the COVID-19 pandemic, at a time when most university classes were unable to take traditional field trips.more »