skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: [Re] Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates
This article reports on a full replication study in computational fluid dynamics, using an immersed boundary method to obtain the flow around a pitching and rolling elliptical wing. As in the original study, the computational experiments investigate the wake topology and aerodynamic forces, looking at the effect of: Reynolds number (100--400), Strouhal number (0.4--1.2), aspect ratio, and rolling/pitching phase difference. We also include a grid-independence study (from 5 to 72 million grid cells). The trends in aerodynamic performance and the characteristics of the wake topology were replicated, despite some differences in results. We declare the replication successful, and make fully available all the digital artifacts and workflow definitions, including software build recipes and container images, as well as secondary data and post-processing code. Run times for each computational experiment on the nominal grid were between 8.1 and 13.8 hours to complete 5 flapping cycles, using two compute nodes with Dual 20-Core 3.70GHz Intel Xeon Gold 6148 CPUs and two NVIDIA V100 GPU devices each.  more » « less
Award ID(s):
1747669
PAR ID:
10326434
Author(s) / Creator(s):
;
Editor(s):
HInsen, Konrad
Date Published:
Journal Name:
The Rescience journal
Volume:
7
Issue:
1
ISSN:
2430-3658
Page Range / eLocation ID:
7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×10^4 to 2.67×10^5 for smooth cable and 2×10^4 to 1.01×10^5 for grooved cable) and yaw angles ranging from 0º to 45º while the upstream model was fixed at various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study. 
    more » « less
  2. Abstract As insects fly, their wings generate complex wake structures that play a crucial role in their aerodynamic force production. This study focuses on utilizing reduced order modeling techniques to gain valuable insights into the fluid dynamic principles underlying insect flight. Specifically, we used an immersed-boundary-method-based computational fluid dynamics (CFD) solver to simulate a hovering hawkmoth’s wake, and then identified the most energetic modes of the wake using proper orthogonal decomposition (POD). Furthermore, we employed a sparse identification of nonlinear dynamics (SINDy) approach to find a simple reduced order model that relates the most energetic POD modes. Through this process, we formulated multiple different models incorporating varying numbers of POD modes. To compare the accuracy of these models, we utilized a force survey method to estimate the aerodynamic forces produced by the hawkmoth’s wings. This force survey method uses an impulse-based approach to calculate the aerodynamic lift and drag based solely on the velocity and vorticity information provided by the model. By comparing the estimated aerodynamic force with the actual force production calculated by the CFD solver, we were able to find the simplest model that still provides an accurate representation of the complex wake produced by the hovering hawkmoth wings. We also evaluated the stability and accuracy of this model as the number of flapping cycles increases with time. The reduced order modeling of insect flight has important implications for the design and control of bio-inspired micro-aerial vehicles. In addition, it holds the potential to reduce the computational cost associated with high-fidelity CFD simulations of complex flows. 
    more » « less
  3. Numerical studies are presented on the propulsive performance and vortex dynamics of multiple hydrofoils pitching in an in-line configuration. The study is motivated by the quest to understand the hydrodynamics of multiple fin–fin interactions in fish swimming. Using the flow conditions (Strouhal and Reynolds numbers) obtained from a solitary pitching foil of zero net thrust, the effect of phase differences between neighboring foils on the hydrodynamic performance is examined both in position-fixed two- and three-foil systems at Reynolds number Re = 500. It is found that the threefoil system achieves a thrust enhancement up to 118% and an efficiency enhancement up to 115% compared to the two-foil system. Correspondingly, the leading-edge vortex (LEV) and the trailing-edge vortex (TEV) of the hindmost foil combine to form a ‘2P’ wake structure behind the three-foil system with the optimal phase differences instead of a ‘2S’ wake, a coherent wake pattern observed behind the optimal two-foil system. The finding suggests that a position-fixed three-foil system can generate a ‘2P’ wake to achieve the maximum thrust production and propulsive efficiency simultaneously by deliberately choosing the undulatory phase for each foil. When increasing Reynolds number to 1000, though the maximum thrust and propulsive efficiency are not achieved simultaneously, the most efficient case still produces more thrust than most of the other cases. Besides, the study on the effects of three-dimensionality shows that when the foils have a larger aspect ratio, the three-foil system has a better hydrodynamic performance, and it follows a similar trend as the two-dimensional (2D) foil system. This work aids in the future design of high-performance underwater vehicles with multiple controlled propulsion elements. 
    more » « less
  4. Various tools have been developed to model the aerodynamics of flapping wings. In particular, quasi-steady models, which are considerably faster and easier to solve than the Navier–Stokes equations, are often utilized in the study of flight dynamics of flapping wing flyers. However, the accuracy of the quasi-steady models has not been properly documented. The objective of this study is to assess the accuracy of a quasi-steady model by comparing the resulting aerodynamic forces against three-dimensional (3D) Navier–Stokes solutions. The same wing motion is prescribed at a fruit fly scale. The pitching amplitude, axis, and duration are varied. Comparison of the aerodynamic force coefficients suggests that the quasi-steady model shows significant discrepancies under extreme pitching motions, i.e., the pitching motion is large, quick, and occurs about the leading or trailing edge. The differences are as large as 1.7 in the cycle-averaged lift coefficient. The quasi-steady model performs well when the kinematics are mild, i.e., the pitching motion is small, long, and occurs near the mid-chord with a small difference in the lift coefficient of 0.01. Our analysis suggests that the main source for the error is the inaccuracy of the rotational lift term and the inability to model the wing-wake interaction in the quasi-steady model. 
    more » « less
  5. The rising global trend to reduce dependence on fossil fuels has provided significant motivation toward the development of alternative energy conversion methods and new technologies to improve their efficiency. Recently, oscillating energy harvesters have shown promise as highly efficient and scalable turbines, which can be implemented in areas where traditional energy extraction and conversion are either unfeasible or cost prohibitive. Although such devices are quickly gaining popularity, there remain a number of hurdles in the understanding of their underlying fluid dynamics phenomena. The ability to achieve high efficiency power output from oscillating airfoil energy harvesters requires exploitation of the complexities of the event of dynamic stall. During dynamic stall, the oncoming flow separates at the leading edge of the airfoil to form leading ledge vortex (LEV) structures. While it is well known that LEVs play a significant role in aerodynamic force generation in unsteady animal flight (e.g. insects and birds), there is still a need to further understand their spatiotemporal evolution in order to design more effective energy harvesting enhancement mechanisms. In this work, we conduct extensive experimental investigations to shed-light on the flow physics of a heaving and pitching airfoil energy harvester operating at reduced frequencies of k = fc=U1 = 0.06-0.18, pitching amplitude of 0 = 75 and heaving amplitude of h0 = 0:6c. The experimental work involves the use of two-component particle image velocimetry (PIV) measurements conducted in a wind tunnel facility at Oregon State University. Velocity fields obtained from the PIV measurements are analyzed qualitatively and quantitatively to provide a description of the dynamics of LEVs and other flow structures that may be present during dynamic stall. Due to the difficulties of accurately measuring aerodynamic forces in highly unsteady flows in wind tunnels, a reduced-order model based on the vortex-impulse theory is proposed for estimating the aerodynamic loadings and power output using flow field data. The reduced-order model is shown to be dominated by two terms that have a clear physical interpretation: (i) the time rate of change of the impulse of vortical structures and (ii) the Kutta-Joukowski force which indirectly represents the history effect of vortex shedding in the far wake. Furthermore, the effects of a bio-inspired flow control mechanism based on deforming airfoil surfaces on the flow dynamics and energy harvesting performance are investigated. The results show that the aerodynamic loadings, and hence power output, are highly dependent on the formation, growth rate, trajectory and detachment of the LEV. It is shown that the energy harvesting efficiency increases with increasing reduced frequency, peaking at 25% when k = 0.14, agreeing very well with published numerical results. At this optimal reduced frequency, the time scales of the LEV evolution and airfoil kinematics are matched, resulting in highly correlated aerodynamic load generation and airfoil motion. When operating at k > 0:14, it is shown that the aerodynamic moment and airfoil pitching motion become negatively correlated and as a result, the energy harvesting performance is deteriorated. Furthermore, by using a deforming airfoil surface at the leading and trailing edges, the peak energy harvesting efficiency is shown to increase by approximately 17% and 25% relative to the rigid airfoil, respectively. The performance enhancement is associated with enhanced aerodynamic forces for both the deforming leading and trailing edges. In addition, The deforming trailing edge airfoil is shown to enhance the correlation between the aerodynamic moment and pitching motion at higher reduced frequencies, resulting in a peak efficiency at k = 0:18 as opposed to k = 0:14 for the rigid airfoil. 
    more » « less