skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: General Seismic Architecture of the Southern San Andreas Fault Zone around the Thousand Palms Oasis from a Large-N Nodal Array
Abstract We discuss general structural features of the Banning and Mission Creek strands (BF and MCF) of the southern San Andreas fault (SSAF) in the Coachella Valley, based on ambient noise and earthquake wavefields recorded by a seismic array with >300 nodes. Earthquake P arrivals show rapid changes in waveform characteristics over 20–40 m zones that coincide with the surface BF and MCF. These variations indicate that the BF and MCF are high-impedance contrast interfaces—an observation supported by the presence of seismic reflections. Another prominent but more diffuse change in SSAF structure is found ∼1 km northeast of the BF. This feature has average-to-low arrival times (P and S) and ambient noise levels (at <30 Hz), and likely represents a relatively fast velocity block sandwiched between broader MCF and BF zones. The maximal arrival delays (P ∼0.1 s and S ∼0.25 s) and the highest ambient noise levels (>2 times median) are consistently observed southwest of the BF—a combined effect of Coachella Valley sediments and rock damage on that side. Immediately northeast of the MCF, large S minus P delays suggest a broad high VP/VS zone associated with asymmetric rock damage across the SSAF. This general overview shows the BF and MCF as mature but distinctly different fault zones. Future analyses will further clarify these and other SSAF features in greater detail.  more » « less
Award ID(s):
1841315
PAR ID:
10326462
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Seismic Record
Volume:
2
Issue:
1
ISSN:
2694-4006
Page Range / eLocation ID:
50 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The 1989 Mw 6.9 Loma Prieta earthquake is the first major event to occur along the San Andreas fault (SAF) zone in central California since the 1906 M 7.9 San Francisco earthquake. Given the complexity of this event, uncertainty has persisted as to whether this earthquake ruptured the SAF itself or a secondary fault. Recent work on the SAF in the Coachella Valley in southern California has revealed similar complexity, arising from a nonplanar, nonvertical fault geometry, and has led us to reexamine the Loma Prieta event. We have compiled data sets and data analyses in the vicinity of the Loma Prieta earthquake, including the 3D seismic velocity model and aftershock relocations of Lin and Thurber (2012), potential field data collected by the U.S. Geological Survey following the earthquake, and seismic refraction and reflection data from the 1991 profile of Catchings et al. (2004). The velocity model and aftershock relocations of Lin and Thurber (2012) reveal a geometry for the SAF that appears similar to that in the Coachella Valley (although rotated 180°): at Loma Prieta the fault dips steeply near the surface and curves with depth to join the moderately southwest-dipping main rupture below 6 km depth, itself also nonplanar. The SAF is a clear velocity boundary, with higher velocities on the northeast, attributable to Mesozoic accretionary and other rocks, and lower velocities on the southwest, attributable to Cenozoic sedimentary and volcanic rocks of the La Honda block. Rocks of the La Honda block have been offset right-laterally hundreds of kilometers from similar rocks in the southern San Joaquin Valley and vicinity, providing evidence that the curved northeast fault boundary of this block is the plate boundary. Thus, we interpret that the Loma Prieta earthquake occurred on the SAF and not on a secondary fault. 
    more » « less
  2. Abstract On 5 April 2024, 10:23 a.m. local time, a moment magnitude 4.8 earthquake struck Tewksbury Township, New Jersey, about 65 km west of New York City. Millions of people from Virginia to Maine and beyond felt the ground shaking, resulting in the largest number (>180,000) of U.S. Geological Survey (USGS) “Did You Feel It?” reports of any earthquake. A team deployed by the Geotechnical Extreme Events Reconnaissance Association and the National Institute of Standards and Technology documented structural and nonstructural damage, including substantial damage to a historic masonry building in Lebanon, New Jersey. The USGS National Earthquake Information Center reported a focal depth of about 5 km, consistent with a lack of signal in Interferometric Synthetic Aperture Radar data. The focal mechanism solution is strike slip with a substantial thrust component. Neither mechanism’s nodal plane is parallel to the primary northeast trend of geologic discontinuities and mapped faults in the region, including the Ramapo fault. However, many of the relocated aftershocks, for which locations were augmented by temporary seismic deployments, form a cluster that parallels the general northeast trend of the faults. The aftershocks lie near the Tewksbury fault, north of the Ramapo fault. 
    more » « less
  3. Abstract Mature strike‐slip faults are usually surrounded by a narrow zone of damaged rocks characterized by low seismic wave velocities. Observations of earthquakes along such faults indicate that seismicity is highly concentrated within this fault damage zone. However, the long‐term influence of the fault damage zone on complete earthquake cycles, that is, years to centuries, is not well understood. We simulate aseismic slip and dynamic earthquake rupture on a vertical strike‐slip fault surrounded by a fault damage zone for a thousand‐year timescale using fault zone material properties and geometries motivated by observations along major strike‐slip faults. The fault damage zone is approximated asan elastic layer with lower shear wave velocity than the surrounding rock. We find that dynamic wave reflections, whose characteristics are strongly dependent on the width and the rigidity contrast of the fault damage zone, have a prominent effect on the stressing history of the fault. The presence of elastic damage can partially explain the variability in the earthquake sizes and hypocenter locations along a single fault, which vary with fault damage zone depth, width and rigidity contrast from the host rock. The depth extent of the fault damage zone has a pronounced effect on the earthquake hypocenter locations, and shallower fault damage zones favor shallower hypocenters with a bimodal distribution of seismicity along depth. Our findings also suggest significant effects on the hypocenter distribution when the fault damage zone penetrates to the nucleation sites of earthquakes, likely being influenced by both lithological (material) and rheological (frictional) boundaries. 
    more » « less
  4. Abstract We study the mechanical response of two‐dimensional vertical strike‐slip fault to coseismic damage evolution and interseismic healing of fault damage zones by simulating fully dynamic earthquake cycles. Our models show that fault zone structure evolution during the seismic cycle can have pronounced effects on mechanical behavior of locked and creeping fault segments. Immature fault damage zone models exhibit small and moderate subsurface earthquakes with irregular recurrence intervals and abundance of slow‐slip events during the interseismic period. In contrast, mature fault damage zone models host pulse‐like earthquake ruptures that can propagate to the surface and extend throughout the seismogenic zone, resulting in large stress drop, characteristic rupture extents, and regular recurrence intervals. Our results suggest that interseismic healing and coseismic damage accumulation in fault zones can explain the observed differences of earthquake behaviors between mature and immature fault zones and indicate a link between regional seismic hazard and fault structural maturity. 
    more » « less
  5. We examine deformed crystalline bedrock in the upper parts of the active San Andreas and ancient San Gabriel Faults, southern California, to 1) determine the nature and origin of micro-scale composition and geochemistry of fault-related rocks, 2) constrain the extent of fluid-rock interactions, and 3) determine the interactions between alteration, mineralization, and deformation. We used drill cores from a 470 m long inclined borehole through the steep-dipping San Gabriel Fault and from seven inclined northeast-plunging boreholes across the San Andreas Fault zone to 150 m deep to show that narrow fault cores 10 cm to 5 m wide lie within 100s m wide damage zones. Petrographic, mineralogic, whole-rock geochemical analyses and synchrotron-based X-ray fluorescence mapping of drill core and thin sections of rocks from the damage zone and narrow principal slip surfaces reveal evidence for the development of early fracture networks, with iron and other transition element mineralization and alteration along the fractures. Alteration includes clay $$\pm$$ chlorite development, carbonate, and zeolite mineralization in matrix and fractures and the mobility of trace and transition elements. Carbonate-zeolite mineralization filled fractures and are associated with element mobility through the crystalline rocks. Textural evidence for repeated shearing, alteration, vein formation, brittle deformation, fault slip, pressure solution, and faulted rock re-lithification indicates significant hydrothermal alteration occurred during shallow-level deformation in the fault zones. The rock assemblages show that hydrothermal conditions in active faults develop at very shallow levels where seismic energy, heat, and fluids are focused. 
    more » « less