skip to main content


Title: Inspecting the Cepheid parallax of pulsation using Gaia EDR3 parallaxes: Projection factor and period-luminosity and period-radius relations
Context. As primary anchors of the distance scale, Cepheid stars play a crucial role in our understanding of the distance scale of the Universe because of their period-luminosity relation. Determining precise and consistent parameters (radius, temperature, color excess, and projection factor) of Cepheid pulsating stars is therefore very important. Aims. With the high-precision parallaxes delivered by the early third Gaia data release (EDR3), we aim to derive various parameters of Cepheid stars in order to calibrate the period-luminosity and period-radius relations and to investigate the relation of period to p -factor. Methods. We applied an implementation of the parallax-of-pulsation method through the algorithm called spectro-photo-interferometry of pulsating stars (SPIPS), which combines all types of available data for a variable star (multiband and multicolor photometry, radial velocity, effective temperature, and interferometry measurements) in a global modeling of its pulsation. Results. We present the SPIPS modeling of a sample of 63 Galactic Cepheids. Adopting Gaia EDR3 parallaxes as an input associated with the best available dataset, we derive consistent values of parameters for these stars such as the radius, multiband apparent magnitudes, effective temperatures, color excesses, period changes, Fourier parameters, and the projection factor. Conclusions. Using the best set of data and the most precise distances for Milky Way Cepheids, we derive new calibrations of the period-luminosity and period-radius relations: M K S = −5.529 ±0.015   −  3.141 ±0.050 (log P   −  0.9) and log R = 1.763 ±0.003   +  0.653 ±0.012 (log P   −  0.9). After investigating the dependences of the projection factor on the parameters of the stars, we find a high dispersion of its values and no evidence of its correlation with the period or with any other parameters such as radial velocity, temperature, or metallicity. Statistically, the p -factor has an average value of p  = 1.26 ± 0.07, but with an unsatisfactory agreement ( σ  = 0.15). In absence of any clear correlation between the p -factor and other quantities, the best agreement is obtained under the assumption that the p -factor can take any value in a band with a width of 0.15. This result highlights the need for a further examination of the physics behind the p -factor.  more » « less
Award ID(s):
1636624
NSF-PAR ID:
10326491
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
656
ISSN:
0004-6361
Page Range / eLocation ID:
A102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the results of the analysis of Type II and anomalous Cepheids using the data from the Kepler K2 mission. The precise light curves of these pulsating variable stars are the key to study the details of their pulsation, such as the period-doubling effect or the presence of additional modes. We applied the Automated Extended Aperture Photometry (autoEAP) to obtain the light curves of the targeted variable stars which were observed. The light curves were Fourier analysed. We investigated 12 stars observed by the K2 mission, seven Type II, and five anomalous Cepheids. Among the Type II Cepheids, EPIC 210622262 shows period-doubling, and four stars have modulation present in their light curves which are different from the period-doubling effect. We calculated the high-order Fourier parameters for the short-period Cepheids. We also determined physical parameters by fitting model atmospheres to the spectral energy distributions. The determined distances using the parallaxes measured by the Gaia space telescope have limited precision below 16 mag for these types of pulsating stars, regardless if the inverse method is used or the statistical method to calculate the distances. The BaSTI evolutionary models were compared to the luminosities and effective temperatures. Most of the Type II Cepheids are modelled with low metallicity models, but for a few of them solar-like metallicity ([Fe/H] = 0.06) model is required. The anomalous Cepheids are compared to low-metallicity single stellar models. We do not see signs of binarity among our sample stars.

     
    more » « less
  2. ABSTRACT

    The period-change rate (PCR) of pulsating variable stars is a useful probe of changes in their interior structure, and thus of their evolutionary stages. So far, the PCRs of classical Cepheids in the Large Magellanic Cloud (LMC) have been explored in a limited sample of the total population of these variables. Here, we use a template-based method to build observed-minus-computed (O − C) period diagrams, from which we can derive PCRs for these stars by taking advantage of the long time baseline afforded by the Digital Access to a Sky Century @ Harvard light curves, combined with additional data from the Optical Gravitational Lensing Experiment, the MAssive Compact Halo Object project, Gaia’s Data Release 2, and in some cases the All-Sky Automated Survey. From an initial sample of 2315 sources, our method provides an unprecedented sample of 1303 LMC classical Cepheids with accurate PCRs, the largest for any single galaxy, including the Milky Way. The derived PCRs are largely compatible with theoretically expected values, as computed by our team using the Modules for Experiments in Stellar Astrophysics code, as well as with similar previous computations available in the literature. Additionally, five long-period ($P\,\gt\, 50\, \rm {d}$) sources display a cyclic behaviour in their O − C diagrams, which is clearly incompatible with evolutionary changes. Finally, on the basis of their large positive PCR values, two first-crossing Cepheid candidates are identified.

     
    more » « less
  3. ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scale height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discovered by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively. 
    more » « less
  4. Context. The collection of high-quality photometric data by space telescopes, such as the completed Kepler mission and the ongoing TESS program, is revolutionizing the area of white-dwarf asteroseismology. Among the different kinds of pulsating white dwarfs, there are those that have He-rich atmospheres, and they are called DBVs or V777 Her variable stars. The archetype of these pulsating white dwarfs, GD 358, is the focus of the present paper. Aims. We report a thorough asteroseismological analysis of the DBV star GD 358 (TIC 219074038) based on new high-precision photometric data gathered by the TESS space mission combined with data taken from the Earth. Methods. We reduced TESS observations of the DBV star GD 358 and performed a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models computed accounting for the complete prior evolution of their progenitors. We assessed the mass of this star by comparing the measured mean period separation with the theoretical averaged period spacings of the models, and we used the observed individual periods to look for a seismological stellar model. We detected potential frequency multiplets for GD 358, which we used to identify the harmonic degree ( ℓ ) of the pulsation modes and rotation period. Results. In total, we detected 26 periodicities from the TESS light curve of this DBV star using standard pre-whitening. The oscillation frequencies are associated with nonradial g (gravity)-mode pulsations with periods from ∼422 s to ∼1087 s. Moreover, we detected eight combination frequencies between ∼543 s and ∼295 s. We combined these data with a huge amount of observations from the ground. We found a constant period spacing of 39.25 ± 0.17 s, which helped us to infer its mass ( M ⋆  = 0.588 ± 0.024  M ⊙ ) and constrain the harmonic degree ℓ of the modes. We carried out a period-fit analysis on GD 358, and we were successful in finding an asteroseismological model with a stellar mass ( M ⋆ = 0.584 −0.019 +0.025   M ⊙ ), compatible with the stellar mass derived from the period spacing, and in line with the spectroscopic mass ( M ⋆  = 0.560 ± 0.028  M ⊙ ). In agreement with previous works, we found that the frequency splittings vary according to the radial order of the modes, suggesting differential rotation. Obtaining a seismological model made it possible to estimate the seismological distance ( d seis  = 42.85 ± 0.73 pc) of GD 358, which is in very good accordance with the precise astrometric distance measured by Gaia EDR3 ( π  = 23.244 ± 0.024,  d Gaia  = 43.02 ± 0.04 pc). Conclusions. The high-quality data measured with the TESS space telescope, used in combination with data taken from ground-based observatories, provides invaluable information for conducting asteroseismological studies of DBV stars, analogously to what happens with other types of pulsating white-dwarf stars. The currently operating TESS mission, together with the advent of other similar space missions and new stellar surveys, will give an unprecedented boost to white dwarf asteroseismology. 
    more » « less
  5. Abstract

    We present new empirical infrared period–luminosity–metallicity (PLZ) and period–Wesenheit–metallicity (PWZ) relations for RR Lyae based on the latest Gaia Early Data Release 3 (EDR3) parallaxes. The relations are provided in the Wide-field Infrared Survey Explorer (WISE) W1 and W2 bands, as well as in the W(W1,V− W1) and W(W2,V− W2) Wesenheit magnitudes. The relations are calibrated using a very large sample of Galactic halo field RR Lyrae stars with homogeneous spectroscopic [Fe/H] abundances (over 1000 stars in the W1 band), covering a broad range of metallicities (−2.5 ≲ [Fe/H] ≲ 0.0). We test the performance of our PLZ and PWZ relations by determining the distance moduli of both galactic and extragalactic stellar associations: the Sculptor dwarf spheroidal galaxy in the Local Group (findingμ¯0=19.47±0.06), the Galactic globular clusters M4 (μ¯0=11.16±0.05), and the Reticulum globular cluster in the Large Magellanic Cloud (μ¯0=18.23±0.06). The distance moduli determined through all our relations are internally self-consistent (within ≲0.05 mag) but are systematically smaller (by ∼2–3σ) than previous literature measurements taken from a variety of methods/anchors. However, a comparison with similar recent RR Lyrae empirical relations anchored with EDR3 likewise shows, to varying extents, a systematically smaller distance modulus for PLZ/PWZ RR Lyrae relations.

     
    more » « less