skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: The Orbit and Dynamical Mass of Polaris: Observations with the CHARA Array
Abstract The 30 yr orbit of the Cepheid Polaris has been followed with observations by the Center for High Angular Resolution Astronomy (CHARA) Array from 2016 through 2021. An additional measurement has been made with speckle interferometry at the Apache Point Observatory. Detection of the companion is complicated by its comparative faintness—an extreme flux ratio. Angular diameter measurements appear to show some variation with pulsation phase. Astrometric positions of the companion were measured with a custom grid-based model-fitting procedure and confirmed with the CANDID software. These positions were combined with the extensive radial velocities (RVs) discussed by Torres to fit an orbit. Because of the imbalance of the sizes of the astrometry and RV data sets, several methods of weighting are discussed. The resulting mass of the Cepheid is 5.13 ± 0.28M. Because of the comparatively large eccentricity of the orbit (0.63), the mass derived is sensitive to the value found for the eccentricity. The mass combined with the distance shows that the Cepheid is more luminous than predicted for this mass from evolutionary tracks. The identification of surface spots is discussed. This would give credence to the identification of a radial velocity variation with a period of approximately 120 days as a rotation period. Polaris has some unusual properties (rapid period change, a phase jump, variable amplitude, and unusual polarization). However, a pulsation scenario involving pulsation mode, orbital periastron passage, and low pulsation amplitude can explain these characteristics within the framework of pulsation seen in Cepheids.  more » « less
Award ID(s):
2034336
PAR ID:
10536139
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
971
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Cepheid AW Per is a component in a multiple system with a long-period orbit. The radial velocities of Griffin cover the 38 yr orbit well. An extensive program of interferometry with the Center for High Angular Resolution Astronomy array is reported here, from which the long-period orbit is determined. In addition, a Hubble Space Telescope high-resolution spectrum in the ultraviolet demonstrates that the companion is itself a binary with nearly equal-mass components. These data combined with a distance from Gaia provide a mass of the Cepheid (primary) ofM1= 6.79 ± 0.85M. The combined mass of the secondary isMS= 8.79 ± 0.50M. The accuracy of the mass will be improved after the fourth Gaia data release, expected in approximately two years. 
    more » « less
  2. Aims.We aim to accurately measure the dynamical mass and distance of Cepheids by combining radial velocity measurements with interferometric observations. Cepheid mass measurements are particularly necessary for solving the Cepheid mass discrepancy, while independent distance determinations provide a crucial test of the period–luminosity relation andGaiaparallaxes. Methods.We used the multi-telescope interferometric combiner, the Michigan InfraRed Combiner (MIRC) of the Center for High Angular Resolution Astronomy (CHARA) Array, to detect and measure the astrometric positions of the high-contrast companion orbiting the Galactic Cepheid SU Cygni. We also present new radial velocity measurements from ultraviolet spectra taken with theHubbleSpace Telescope. The combination of interferometric astrometry with optical and ultraviolet spectroscopy provided the full orbital elements of the system, in addition to component masses and the distance to the Cepheid system. Results.We measured the mass of the Cepheid,MA = 4.859 ± 0.058 M, and its two companions,MBa = 3.595 ± 0.033 MandMBb = 1.546 ± 0.009 M. This is the most accurate existing measurement of the mass of a Galactic Cepheid (1.2%). Comparing with stellar evolution models, we show that the mass predicted by the tracks is higher than the measured mass of the Cepheid, which is similar to the conclusions of our previous work. We also measured the distance to the system to be 926.3 ± 5.0 pc, obtaining an unprecedented parallax precision of 6 μas (0.5%), which is the most precise and accurate distance for a Cepheid. This precision is similar to what is expected byGaiafor its last data release (DR5 in ∼2030) for single stars fainter thanG = 13, but is not guaranteed for stars as bright as SU Cyg. Conclusions.We demonstrate that evolutionary models remain incapable of accurately reproducing the measured mass of Cepheids, often predicting higher masses for the expected metallicity, even when factors such as rotation or convective core overshooting are taken into account. Our precise distance measurement allowed us to compare predictions from some period–luminosity relations. We find a disagreement of 0.2–0.5 mag with relations calibrated from photometry, while relations calibrated from a direct distance measurement are in better agreement. 
    more » « less
  3. Abstract AQ Col (EC 05217-3914) is one of the first detected pulsating subdwarf B (sdB) stars and has been considered to be a single star. Photometric monitoring of AQ Col reveals a pulsation timing variation with a period of 486 days, interpreted as time delay due to reflex motion in a wide binary formed with an unseen companion with expected mass larger than 1.05 M ⊙ . The optical spectra and color–magnitude diagram of the system suggested that the companion is not a main-sequence star but a white dwarf or neutron star. The pulsation timing variation also shows that the system has an eccentricity of 0.424, which is much larger than any known sdB long period binary system. That might be due to the existence of another short period companion to the sdB star. Two optical spectra obtained on 1996 December 5 show a radial velocity change of 49.1 km s −1 in 46.1 minutes, which suggests the hot subdwarf in the wide binary is itself a close binary formed with another unseen white dwarf or neutron star companion; if further observations show this interpretation to be correct, AQ Col is an interesting triple system worthy of further study. 
    more » « less
  4. Abstract The LHS 1610 system consists of a nearby (d= 9.7 pc) M5 dwarf hosting a candidate brown dwarf companion in a 10.6 days, eccentric (e∼ 0.37) orbit. We confirm this brown dwarf designation and estimate its mass ( 49.5 3.5 + 4.3 MJup) and inclination (114.5° 10.0 + 7.4 ) by combining discovery radial velocities (RVs) from the Tillinghast Reflector Echelle Spectrograph and new RVs from the Habitable-zone Planet Finder with the available Gaia astrometric two-body solution. We highlight a discrepancy between the measurement of the eccentricity from the Gaia two-body solution (e= 0.52 ± 0.03) and the RV-only solution (e= 0.3702 ± 0.0003). We discuss possible reasons for this discrepancy, which can be further probed when the Gaia astrometric time series become available as part of Gaia Data Release 4. As a nearby mid-M star hosting a massive short-period companion with a well-characterized orbit, LHS 1610 b is a promising target to look for evidence of sub-Alfvénic interactions and/or auroral emission at optical and radio wavelengths. LHS 1610 has a flare rate (0.28 ± 0.07 flares per day) on the higher end for its rotation period (84 ± 8 days), similar to other mid-M dwarf systems such as Proxima Cen and YZ Ceti that have recent radio detections compatible with star–planet interactions. While available Transiting Exoplanet Survey Satellite photometry is insufficient to determine an orbital phase dependence of the flares, our complete orbital characterization of this system makes it attractive to probe star–companion interactions with additional photometric and radio observations. 
    more » « less
  5. Abstract We report the discovery of SDSS J022932.28+713002.7, a nascent extremely low-mass (ELM) white dwarf (WD) orbiting a massive (>1Mat 2σconfidence) companion with a period of 36 hr. We use a combination of spectroscopy, including data from the ongoing fifth-generation Sloan Digital Sky Survey (SDSS-V), and photometry to measure the stellar parameters of the primary pre-ELM WD. The lightcurve of the primary WD exhibits ellipsoidal variation, which we combine with radial velocity data andPHOEBEbinary simulations to estimate the mass of the invisible companion. We find that the primary WD has massM1= 0.18 0.02 + 0.02 Mand the unseen secondary has massM2= 1.19 0.14 + 0.21 M. The mass of the companion suggests that it is most likely a near-Chandrasekhar-mass WD or a neutron star. It is likely that the system recently went through a Roche lobe overflow from the visible primary onto the invisible secondary. The dynamical configuration of the binary is consistent with the theoretical evolutionary tracks for such objects, and the primary is currently in its contraction phase. The measured orbital period puts this system on a stable evolutionary path which, within a few gigayears, will lead to a contracted ELM WD orbiting a massive compact companion. 
    more » « less