skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of atlas-based and neural-network-based semantic segmentation for DENSE MRI images
Two segmentation methods, one atlas-based and one neural-network-based, were compared to see how well they can each automatically segment the brain stem and cerebellum in Displacement Encoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE-MRI) data. The segmentation is a pre-requisite for estimating the average displacements in these regions, which have recently been proposed as biomarkers in the diagnosis of Chiari Malformation type I (CMI). In numerical experiments, the segmentations of both methods were similar to manual segmentations provided by trained experts. It was found that, overall, the neural-network-based method alone produced more accurate segmentations than the atlas-based method did alone, but that a combination of the two methods -- in which the atlas-based method is used for the segmentation of the brain stem and the neural-network is used for the segmentation of the cerebellum -- may be the most successful.  more » « less
Award ID(s):
2051019 1751636
PAR ID:
10326577
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SIAM undergraduate research online
ISSN:
2327-7807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 7T magnetic resonance imaging (MRI) has the potential to drive our understanding of human brain function through new contrast and enhanced resolution. Whole brain segmentation is a key neuroimaging technique that allows for region-by-region analysis of the brain. Segmentation is also an important preliminary step that provides spatial and volumetric information for running other neuroimaging pipelines. Spatially localized atlas network tiles (SLANT) is a popular 3D convolutional neural network (CNN) tool that breaks the whole brain segmentation task into localized sub-tasks. Each sub-task involves a specific spatial location handled by an independent 3D convolutional network to provide high resolution whole brain segmentation results. SLANT has been widely used to generate whole brain segmentations from structural scans acquired on 3T MRI. However, the use of SLANT for whole brain segmentation from structural 7T MRI scans has not been successful due to the inhomogeneous image contrast usually seen across the brain in 7T MRI. For instance, we demonstrate the mean percent difference of SLANT label volumes between a 3T scan-rescan is approximately 1.73%, whereas its 3T-7T scan-rescan counterpart has higher differences around 15.13%. Our approach to address this problem is to register the whole brain segmentation performed on 3T MRI to 7T MRI and use this information to finetune SLANT for structural 7T MRI. With the finetuned SLANT pipeline, we observe a lower mean relative difference in the label volumes of ~8.43% acquired from structural 7T MRI data. Dice similarity coefficient between SLANT segmentation on the 3T MRI scan and the after finetuning SLANT segmentation on the 7T MRI increased from 0.79 to 0.83 with p<0.01. These results suggest finetuning of SLANT is a viable solution for improving whole brain segmentation on high resolution 7T structural imaging. 
    more » « less
  2. The human brain is sexually dimorphic and these sex differences have shown to affect brain response to trauma. We investigated the sex differences in the tract structures by studying diffusion weighted (DW) images of 594 females and 506 males from the Human-Connectome-Project dataset. All the female and male DW images were reconstructed in the ICBM152 space using Q-Space diffeomorphic reconstruction technique and their mapped orientation distribution function images were averaged to generate the female- and male-DW-templates. The tract streamlines were generated through tractography for female and male templates and normalized to the total brain volume . The distributions of normalized tract lengths were significantly different between female- and male-templates and the female-template showed to have more longer normalized tracts compared to the male template. For the regional analysis, the templates were parcellated into sixteen regions of interests (ROI) including brain-stem, five subregions of corpus-callosum, and right and left hippocampus, thalamus, cerebellum white-matter (WM), cerebral WM, and cerebellum cortex using a FreeSurfer-based segmentation atlas. For all the ROIs, the average fractional anisotropy (0.5-5.7%) and normalized tract lengths (1.1-2.7%) were larger in female template while the average mean diffusion was larger (1.3-5.6%) in male-template. Quantifying brain connectivity by counting number of tracts passing through pairs of ROIs, showed more pairs with a higher connectivity in female-template, and one of the highest percentages of sex differences in right/left cerebellum WM/cortex connections. Our results reinforce the need to continue investigating the sex variations in axonal structure and their effects to brain trauma. 
    more » « less
  3. For semantic segmentation, label probabilities are often uncalibrated as they are typically only the by-product of a segmentation task. Intersection over Union (IoU) and Dice score are often used as criteria for segmentation success, while metrics related to label probabilities are not often explored. However, probability calibration approaches have been studied, which match probability outputs with experimentally observed errors. These approaches mainly focus on classification tasks, but not on semantic segmentation. Thus, we propose a learning-based calibration method that focuses on multi-label semantic segmentation. Specifically, we adopt a convolutional neural network to predict local temperature values for probability calibration. One advantage of our approach is that it does not change prediction accuracy, hence allowing for calibration as a postprocessing step. Experiments on the COCO, CamVid, and LPBA40 datasets demonstrate improved calibration performance for a range of different metrics. We also demonstrate the good performance of our method for multi-atlas brain segmentation from magnetic resonance images. 
    more » « less
  4. We introduce a neural network framework, utilizing adversarial learning to partition an image into two cuts, with one cut falling into a reference distribution provided by the user. This concept tackles the task of unsupervised anomaly segmentation, which has attracted increasing attention in recent years due to their broad applications in tasks with unlabelled data. This Adversarial-based Selective Cutting network (ASC-Net) bridges the two domains of cluster-based deep learning methods and adversarial-based anomaly/novelty detection algorithms. We evaluate this unsupervised learning model on BraTS brain tumor segmentation, LiTS liver lesion segmentation, and MS-SEG2015 segmentation tasks. Compared to existing methods like the AnoGAN family, our model demonstrates tremendous performance gains in unsupervised anomaly segmentation tasks. Although there is still room to further improve performance compared to supervised learning algorithms, the promising experimental results shed light on building an unsupervised learning algorithm using user-defined knowledge. 
    more » « less
  5. We present a neural technique for learning to select a local sub-region around a point which can be used for mesh parameterization. The motivation for our framework is driven by interactive workflows used for decaling, texturing, or painting on surfaces. Our key idea is to incorporate segmentation probabilities as weights of a classical parameterization method, implemented as a novel differentiable parameterization layer within a neural network framework. We train a segmentation network to select 3D regions that are parameterized into 2D and penalized by the resulting distortion, giving rise to segmentations which are distortion-aware. Following training, a user can use our system to interactively select a point on the mesh and obtain a large, meaningful region around the selection which induces a low-distortion parameterization. 
    more » « less