Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using a simplified two-stage ice sheet model, we explore the potential of statistical data assimilation methods to improve predictions of glacier melt, which has significant implications for reducing uncertainty in projections of sea level rise. Through twin experiments utilizing artificial data, we find that the ensemble Kalman filter improves simulations of glacier evolution initialized with incorrect initial conditions and parameters, providing us with better predictions of future glacier melt. We explore the number of observations necessary to produce an accurate model run. We also explore optimal observation assimilation schemes, and determine that deviations from the true glacier response that stem from having few data points in the pre-satellite era can be corrected with modern observation data. Our results show that statistical data assimilation methods have great potential to improve complex glacier models using real-world observations.more » « less
-
This project explores adversarial training techniques to develop fairer Deep Neural Networks (DNNs) to mitigate the inherent bias they are known to exhibit. DNNs are susceptible to inheriting bias with respect to sensitive attributes such as race and gender, which can lead to life-altering outcomes (e.g., demographic bias in facial recognition software used to arrest a suspect). We propose a robust optimization problem, which we demonstrate can improve fairness in several datasets, both synthetic and real-world, using an affine linear model. Leveraging second order information, we are able to find a solution to our optimization problem more efficiently than with a purely first order method.more » « less
-
In the field of healthcare, electronic health records (EHR) serve as crucial training data for developing machine learning models for diagnosis, treatment, and the management of healthcare resources. However, medical datasets are often imbalanced in terms of sensitive attributes such as race/ethnicity, gender, and age. Machine learning models trained on class-imbalanced EHR datasets perform significantly worse in deployment for individuals of the minority classes compared to those from majority classes, which may lead to inequitable healthcare outcomes for minority groups. To address this challenge, we propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE), a novel approach to augment imbalanced datasets using samples generated by a deep generative model. The MCRAGE process involves training a Conditional Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes. We use this synthetic data to augment the existing imbalanced dataset, resulting in a more balanced distribution across all classes, which can be used to train less biased downstream models. We measure the performance of MCRAGE versus alternative approaches using Accuracy, F1 score and AUROC of these downstream models. We provide theoretical justification for our method in terms of recent convergence results for DDPMs.more » « less
-
Two segmentation methods, one atlas-based and one neural-network-based, were compared to see how well they can each automatically segment the brain stem and cerebellum in Displacement Encoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE-MRI) data. The segmentation is a pre-requisite for estimating the average displacements in these regions, which have recently been proposed as biomarkers in the diagnosis of Chiari Malformation type I (CMI). In numerical experiments, the segmentations of both methods were similar to manual segmentations provided by trained experts. It was found that, overall, the neural-network-based method alone produced more accurate segmentations than the atlas-based method did alone, but that a combination of the two methods -- in which the atlas-based method is used for the segmentation of the brain stem and the neural-network is used for the segmentation of the cerebellum -- may be the most successful.more » « less
-
To analyze the abundance of multidimensional data, tensor-based frameworks have been developed. Traditionally, the matrix singular value decomposition (SVD) is used to extract the most dominant features from a matrix containing the vectorized data. While the SVD is highly useful for data that can be appropriately represented as a matrix, this step of vectorization causes us to lose the high-dimensional relationships intrinsic to the data. To facilitate efficient multidimensional feature extraction, we utilize a projection-based classification algorithm using the t-SVDM, a tensor analog of the matrix SVD. Our work extends the t-SVDM framework and the classification algorithm, both initially proposed for tensors of order 3, to any number of dimensions. We then apply this algorithm to a classification task using the StarPlus fMRI dataset. Our numerical experiments demonstrate that there exists a superior tensor-based approach to fMRI classification than the best possible equivalent matrix-based approach. Our results illustrate the advantages of our chosen tensor framework, provide insight into beneficial choices of parameters, and could be further developed for classification of more complex imaging data. We provide our Python implementation at https://github.com/elizabethnewman/tensor-fmrimore » « less
An official website of the United States government

Full Text Available