skip to main content


Title: A Tensor SVD-based Classification Algorithm Applied to fMRI Data
To analyze the abundance of multidimensional data, tensor-based frameworks have been developed. Traditionally, the matrix singular value decomposition (SVD) is used to extract the most dominant features from a matrix containing the vectorized data. While the SVD is highly useful for data that can be appropriately represented as a matrix, this step of vectorization causes us to lose the high-dimensional relationships intrinsic to the data. To facilitate efficient multidimensional feature extraction, we utilize a projection-based classification algorithm using the t-SVDM, a tensor analog of the matrix SVD. Our work extends the t-SVDM framework and the classification algorithm, both initially proposed for tensors of order 3, to any number of dimensions. We then apply this algorithm to a classification task using the StarPlus fMRI dataset. Our numerical experiments demonstrate that there exists a superior tensor-based approach to fMRI classification than the best possible equivalent matrix-based approach. Our results illustrate the advantages of our chosen tensor framework, provide insight into beneficial choices of parameters, and could be further developed for classification of more complex imaging data. We provide our Python implementation at https://github.com/elizabethnewman/tensor-fmri  more » « less
Award ID(s):
2051019 1751636
NSF-PAR ID:
10326606
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tucker decomposition is a low-rank tensor approximation that generalizes a truncated matrix singular value decomposition (SVD). Existing parallel software has shown that Tucker decomposition is particularly effective at compressing terabyte-sized multidimensional scientific simulation datasets, computing reduced representations that satisfy a specified approximation error. The general approach is to get a low-rank approximation of the input data by performing a sequence of matrix SVDs of tensor unfoldings, which tend to be short-fat matrices. In the existing approach, the SVD is performed by computing the eigendecomposition of the Gram matrix of the unfolding. This method sacrifices some numerical stability in exchange for lower computation costs and easier parallelization. We propose using a more numerically stable though more computationally expensive way to compute the SVD by pre- processing with a QR decomposition step and computing an SVD of only the small triangular factor. The more numerically stable approach allows us to achieve the same accuracy with half the working precision (for example, single rather than double precision). We demonstrate that our method scales as well as the existing approach, and the use of lower precision leads to an overall reduction in running time of up to a factor of 2 when using 10s to 1000s of processors. Using the same working precision, we are also able to compute Tucker decompositions with much smaller approximation error. 
    more » « less
  2. null (Ed.)
    We propose a new online algorithm, called TOUCAN, forthe tensor completion problem of imputing missing entriesof a low tubal-rank tensor using the tensor-tensor product (t-product) and tensor singular value decomposition (t-SVD) al-gebraic framework. We also demonstrate TOUCAN’s abilityto track changing free submodules from highly incompletestreaming 2-D data. TOUCAN uses principles from incre-mental gradient descent on the Grassmann manifold to solvethe tensor completion problem with linear complexity andconstant memory in the number of time samples. We com-pare our results to state-of-the-art batch tensor completion al-gorithms and matrix completion algorithms. We show our re-sults on real applications to recover temporal MRI data underlimited sampling. 
    more » « less
  3. We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling. 
    more » « less
  4. We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling. 
    more » « less
  5. null (Ed.)
    Compressed sensing (CS) as a new data acquisition technique has been applied to monitor manufacturing processes. With a few measurements, sparse coefficient vectors can be recovered by solving an inverse problem and original signals can be reconstructed. Dictionary learning methods have been developed and applied in combination with CS to improve the sparsity level of the recovered coefficient vectors. In this work, a physics-constrained dictionary learning approach is proposed to solve both of reconstruction and classification problems by optimizing measurement, basis, and classification matrices simultaneously with the considerations of the application-specific restrictions. It is applied in image acquisitions in selective laser melting (SLM). The proposed approach includes the optimization in two steps. In the first stage, with the basis matrix fixed, the measurement matrix is optimized by determining the pixel locations for sampling in each image. The optimized measurement matrix only includes one non-zero entry in each row. The optimization of pixel locations is solved based on a constrained FrameSense algorithm. In the second stage, with the measurement matrix fixed, the basis and classification matrices are optimized based on the K-SVD algorithm. With the optimized basis matrix, the coefficient vector can be recovered with CS. The original signal can be reconstructed by the linear combination of the basis matrix and the recovered coefficient vector. The original signal can also be classified to identify different machine states by the linear combination of the classification matrix and the coefficient vector. 
    more » « less