skip to main content


Title: Online Tensor Completion and Free Submodule Tracking With The T-SVD
We propose a new online algorithm, called TOUCAN, forthe tensor completion problem of imputing missing entriesof a low tubal-rank tensor using the tensor-tensor product (t-product) and tensor singular value decomposition (t-SVD) al-gebraic framework. We also demonstrate TOUCAN’s abilityto track changing free submodules from highly incompletestreaming 2-D data. TOUCAN uses principles from incre-mental gradient descent on the Grassmann manifold to solvethe tensor completion problem with linear complexity andconstant memory in the number of time samples. We com-pare our results to state-of-the-art batch tensor completion al-gorithms and matrix completion algorithms. We show our re-sults on real applications to recover temporal MRI data underlimited sampling.  more » « less
Award ID(s):
1838179 1845076
NSF-PAR ID:
10205313
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
3282 to 3286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling. 
    more » « less
  2. We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling. 
    more » « less
  3. Recommendation for e-commerce with a mix of durable and nondurable goods has characteristics that distinguish it from the well-studied media recommendation problem. The demand for items is a combined effect of form utility and time utility, i.e., a product must both be intrinsically appealing to a consumer and the time must be right for purchase. In particular for durable goods, time utility is a function of inter-purchase duration within product category because consumers are unlikely to purchase two items in the same category in close temporal succession. Moreover, purchase data, in contrast to rating data, is implicit with non-purchases not necessarily indicating dislike. Together, these issues give rise to the positive-unlabeled demand-aware recommendation problem that we pose via joint low-rank tensor completion and product category inter-purchase duration vector estimation. We further relax this problem and propose a highly scalable alternating minimization approach with which we can solve problems with millions of users and millions of items in a single thread. We also show superior prediction accuracies on multiple real-world datasets. 
    more » « less
  4. null (Ed.)
    Existing tensor completion formulation mostly relies on partial observations from a single tensor. However, tensors extracted from real-world data often are more complex due to: (i) Partial observation: Only a small subset of tensor elements are available. (ii) Coarse observation: Some tensor modes only present coarse and aggregated patterns (e.g., monthly summary instead of daily reports). In this paper, we are given a subset of the tensor and some aggregated/coarse observations (along one or more modes) and seek to recover the original fine-granular tensor with low-rank factorization. We formulate a coupled tensor completion problem and propose an efficient Multi-resolution Tensor Completion model (MTC) to solve the problem. Our MTC model explores tensor mode properties and leverages the hierarchy of resolutions to recursively initialize an optimization setup, and optimizes on the coupled system using alternating least squares. MTC ensures low computational and space complexity. We evaluate our model on two COVID-19 related spatio-temporal tensors. The experiments show that MTC could provide 65.20% and 75.79% percentage of fitness (PoF) in tensor completion with only 5% fine granular observations, which is 27.96% relative improvement over the best baseline. To evaluate the learned low-rank factors, we also design a tensor prediction task for daily and cumulative disease case predictions, where MTC achieves 50% in PoF and 30% relative improvements over the best baseline. 
    more » « less
  5. null (Ed.)
    Matrix completion, the problem of completing missing entries in a data matrix with low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank type assumptions. In this paper, we study the tensor completion problem when the sampling pattern is deterministic and possibly non-uniform. We first propose an efficient weighted Higher Order Singular Value Decomposition (HOSVD) algorithm for the recovery of the underlying low-rank tensor from noisy observations and then derive the error bounds under a properly weighted metric. Additionally, the efficiency and accuracy of our algorithm are both tested using synthetic and real datasets in numerical simulations. 
    more » « less