Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.
more »
« less
Multi-scale model of clogging in microfluidic devices with grid-like geometries
We propose a coarse-grained theoretical model to capture the ageing of microfluidic devices under different conditions including constant applied flow rate and constant applied pressure gradient. Microfluidic devices that sort cells by their deformability hold significant promise for medical applications. However, clogging in these microfluidic systems causes their properties to change over time and potentially limits their reliability. We compare the results of the coarse-grained model with those of stochastic simulations and with existing theoretical studies. Lastly, we apply the model to experimental data on the clogging of sickle red blood cells and discuss its wider applicability.
more »
« less
- Award ID(s):
- 1913093
- PAR ID:
- 10326693
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 478
- Issue:
- 2261
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through tissues and across endothelial cell layers, and changes to the mechanical properties of the nucleus can serve as novel biomarkers in processes such as cancer progression and stem cell differentiation. However, current techniques to measure the viscoelastic nuclear mechanical properties are often time consuming, limited to probing one cell at a time, or require expensive, highly specialized equipment. Furthermore, many current assays do not measure time-dependent properties, which are characteristic of viscoelastic materials. Here, we present an easy-to-use microfluidic device that applies the well-established approach of micropipette aspiration, adapted to measure many cells in parallel. The device design allows rapid loading and purging of cells for measurements, and minimizes clogging by large particles or clusters of cells. Combined with a semi-automated image analysis pipeline, the microfluidic device approach enables significantly increased experimental throughput. We validated the experimental platform by comparing computational models of the fluid mechanics in the device with experimental measurements of fluid flow. In addition, we conducted experiments on cells lacking the nuclear envelope protein lamin A/C and wild-type controls, which have well-characterized nuclear mechanical properties. Fitting time-dependent nuclear deformation data to power law and different viscoelastic models revealed that loss of lamin A/C significantly altered the elastic and viscous properties of the nucleus, resulting in substantially increased nuclear deformability. Lastly, to demonstrate the versatility of the devices, we characterized the viscoelastic nuclear mechanical properties in a variety of cell lines and experimental model systems, including human skin fibroblasts from an individual with a mutation in the lamin gene associated with dilated cardiomyopathy, healthy control fibroblasts, induced pluripotent stem cells (iPSCs), and human tumor cells. Taken together, these experiments demonstrate the ability of the microfluidic device and automated image analysis platform to provide robust, high throughput measurements of nuclear mechanical properties, including time-dependent elastic and viscous behavior, in a broad range of applications.more » « less
-
null (Ed.)We developed coarse-grained models of spike proteins in SARS-CoV-2 coronavirus and angiotensin-converting enzyme 2 (ACE2) receptor proteins to study the endocytosis of a whole coronavirus under physiologically relevant spatial and temporal scales. We first conducted all-atom explicit-solvent molecular dynamics simulations of the recently characterized structures of spike and ACE2 proteins. We then established coarse-grained models using the shape-based coarse-graining approach based on the protein crystal structures and extracted the force field parameters from the all-atom simulation trajectories. To further analyze the coarse-grained models, we carried out normal mode analysis of the coarse-grained models to refine the force field parameters by matching the fluctuations of the internal coordinates with the original all-atom simulations. Finally, we demonstrated the capability of these coarse-grained models by simulating the endocytosis of a whole coronavirus through the host cell membrane. We embedded the coarse-grained models of spikes on the surface of the virus envelope and anchored ACE2 receptors on the host cell membrane, which is modeled using a one-particle-thick lipid bilayer model. The coarse-grained simulations show the spike proteins adopt bent configurations due to their unique flexibility during their interaction with the ACE2 receptors, which makes it easier for them to attach to the host cell membrane than rigid spikes.more » « less
-
null (Ed.)The functions of colloids, such as membranes and vesicles, are dictated by interfacial properties which are determined by an interplay of physical interactions and processes spanning multiple spatiotemporal scales. The multiscale characteristics of membranes and vesicles can be resolved by the hybrid molecular dynamics-lattice Boltzmann technique. This technique enables the resolution of particle dynamics along with long range electrostatic and hydrodynamic interactions. We have examined the feasibility of an implementation of the hybrid technique in conjunction with a Martini-based implicit solvent coarse-grained force field to capture the molecular and interfacial characteristics of membranes and vesicles. For simplicity, we have examined two types of vesicles whose molecular components have different sustained interactions with the solvent. One of the vesicles encompassed phospholipids and the other vesicle was composed of phospholipids and poly ethylene glycol (PEG)-grafted lipids. The molecular and interfacial characteristics of the phospholipid vesicle and PEGylated, or hairy, vesicles are found to be in good agreement with earlier experimental, computational and theoretical findings. These results demonstrate that the multiscale hybrid technique used with a Martini-based implicit solvent coarse-grained model is suitable for capturing the molecular and interfacial characteristics of membranes and vesicles. Furthermore, other implicit solvent coarse-grained models can be used in conjunction with the hybrid molecular dynamics-lattice Boltzmann technique to examine the molecular and interfacial characteristics of membranes and vesicles. Our study demonstrates the potential of the hybrid technique in capturing multiscale interfacial characteristics of intra- and inter-colloid interactions in suspensions under different flow conditions, and their relation to molecular properties. In addition, this technique can be applied to design colloids with multiscale characteristics which yield desired interactions with other colloids and responses to external stimuli.more » « less
-
Biomolecular condensates play a key role in cytoplasmic compartmentalization and cell functioning. Despite extensive research on the physico-chemical, thermodynamic, or crowding aspects of the formation and stabilization of the condensates, one less studied feature is the role of external perturbative fluid flow. In fact, in living cells, shear stress may arise from streaming or active transport processes. Here, we investigate how biomolecular condensates are deformed under different types of shear flows. We first model Couette flow perturbations via two-way coupling between the condensate dynamics and fluid flow by deploying Lattice Boltzmann Molecular Dynamics. We then show that a simplified approach where the shear flow acts as a static perturbation (one-way coupling) reproduces the main features of the condensate deformation and dynamics as a function of the shear rate. With this approach, which can be easily implemented in molecular dynamics simulations, we analyze the behavior of biomolecular condensates described through residue-based coarse-grained models, including intrinsically disordered proteins and protein/RNA mixtures. At lower shear rates, the fluid triggers the deformation of the condensate (spherical to oblated object), while at higher shear rates, it becomes extremely deformed (oblated or elongated object). At very high shear rates, the condensates are fragmented. We also compare how condensates of different sizes and composition respond to shear perturbation, and how their internal structure is altered by external flow. Finally, we consider the Poiseuille flow that realistically models the behavior in microfluidic devices in order to suggest potential experimental designs for investigating fluid perturbations in vitro.more » « less
An official website of the United States government

