skip to main content


Title: QM/MM modeling of class A β-lactamases reveals distinct acylation pathways for ampicillin and cefalexin
Efficient mechanism-based design of antibiotics that are not susceptible to β-lactamases is hindered by the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various β-lactams. Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the acylation reaction catalyzed by CTX-M-44 (Toho-1) β-lactamase. We show that the catalytic pathways for β-lactam hydrolysis are correlated to substrate scaffolds: using Glu166 as the only general base for acylation is viable for ampicillin but prohibitive for cefalexin. The present computational workflow provides quantitative insights to facilitate the optimization of future β-lactam antibiotics.  more » « less
Award ID(s):
1753167
NSF-PAR ID:
10326708
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Organic & Biomolecular Chemistry
Volume:
19
Issue:
42
ISSN:
1477-0520
Page Range / eLocation ID:
9182 to 9189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gram-negative bacteria expressing class A β-lactamases pose a serious health threat due to their ability to inactivate all β-lactam antibiotics. The acyl–enzyme intermediate is a central milestone in the hydrolysis reaction catalyzed by these enzymes. However, the protonation states of the catalytic residues in this complex have never been fully analyzed experimentally due to inherent difficulties. To help unravel the ambiguity surrounding class A β-lactamase catalysis, we have used ultrahigh-resolution X-ray crystallography and the recently approved β-lactamase inhibitor avibactam to trap the acyl–enzyme complex of class A β-lactamase CTX-M-14 at varying pHs. A 0.83-Å-resolution CTX-M-14 complex structure at pH 7.9 revealed a neutral state for both Lys73 and Glu166. Furthermore, the avibactam hydroxylamine-O-sulfonate group conformation varied according to pH, and this conformational switch appeared to correspond to a change in the Lys73 protonation state at low pH. In conjunction with computational analyses, our structures suggest that Lys73 has a perturbed acid dissociation constant (pKa) compared with acyl–enzyme complexes with β-lactams, hindering its function to deprotonate Glu166 and the initiation of the deacylation reaction. Further NMR analysis demonstrated Lys73 pKato be ∼5.2 to 5.6. Together with previous ultrahigh-resolution crystal structures, these findings enable us to follow the proton transfer process of the entire acylation reaction and reveal the critical role of Lys73. They also shed light on the stability and reversibility of the avibactam carbamoyl acyl–enzyme complex, highlighting the effect of substrate functional groups in influencing the protonation states of catalytic residues and subsequently the progression of the reaction.

     
    more » « less
  2. Penicillins and cephalosporins belong to the β-lactam antibiotic family, which accounts for more than half of the world market for antibiotics. Misuse of antibiotics harms human health and the environment. Here, we describe an easy, fast, and sensitive optical method for the sensing and discrimination of two penicillin and five cephalosporin antibiotics in buffered water at pH 7.4, using fifth-generation poly (amidoamine) (PAMAM) dendrimers and calcein, a commercially available macromolecular polyelectrolyte and a fluorescent dye, respectively. In aqueous solution at pH 7.4, the dendrimer and dye self-assemble to form a sensor that interacts with carboxylate-containing antibiotics through electrostatic interaction, monitored through changes in the dye’s spectroscopic properties. This response was captured through absorbance, fluorescence emission, and fluorescence anisotropy. The resulting data set was processed through linear discriminant analysis (LDA), a common pattern-base recognition method, for the differentiation of cephalosporins and penicillins. By pre-hydrolysis of the β-lactam rings under basic conditions, we were able to increase the charge density of the analytes, allowing us to discriminate the seven analytes at a concentration of 5 mM, with a limit of discrimination of 1 mM. 
    more » « less
  3. Beta-lactam antibiotics, which are used extensively in human and veterinary applications, are commonly detected in surface waters. To examine how the distinct structures of different generations of beta-lactam antibiotics can influence their persistence or degradation in environmental aqueous media, we examined the fate of two penams (amoxicillin and cloxacillin) and two cephems (cephalexin and ceftriaxone) at pH 5.0 and pH 7.0. By contrast to the lack of hydrolysis of the penam antibiotics at both pHs, we observed hydrolysis of cephalexin at pH 7.0 (t1/2 = 12 d) and ceftriaxone at pH 5.0 (t1/2 = 2.8 d). Using high-performance liquid chromatography coupled with a diode array detector or a high-resolution mass spectrometer, we were able to confirm thiotriazinone and 3-desacetyl cefotaxime as major hydrolysis products of ceftriaxone, and propose the hydrolytic cleavage of the benzene and cephem moieties from cephalexin. In addition, we studied the effects of smectite clay particles suspended in solutions without or with dissolved organic matter. The adsorption capacity of the clay was 4- to 9-fold higher at pH 7.0 than at pH 5.0. Subsequent X-ray diffraction analysis revealed that the antibiotic adsorption was not within the clay interlayer nanopores but occurred primarily on the external clay surfaces. The addition of dissolved organic matter interfered with the adsorption of a cephem antibiotic (ceftriaxone) on the clay, but the adsorption of a penam antibiotic (amoxicillin) remained unaffected. We employed molecular modeling simulations to probe the mechanisms of adsorption on the mineral surface. Our findings offer new insights on how the compound structures can dictate different fates of the beta-lactam class of antibiotics in environmental media. 
    more » « less
  4. Abstract

    Genes that confer antibiotic resistance can rapidly be disseminated from one microorganism to another by mobile genetic elements, thus transferring resistance to previously susceptible bacterial strains. The misuse of antibiotics in health care and agriculture has provided a powerful evolutionary pressure to accelerate the spread of resistance genes, including those encoding β-lactamases. These are enzymes that are highly efficient in inactivating most of the commonly used β-lactam antibiotics. However, genes that confer antibiotic resistance are not only associated with pathogenic microorganisms, but are also found in non-pathogenic (i.e. environmental) microorganisms. Two recent examples are metal-dependent β-lactamases (MBLs) from the marine organismsNovosphingobium pentaromativoransandSimiduia agarivorans.Previous studies have demonstrated that their β-lactamase activity is comparable to those of well-known MBLs from pathogenic sources (e.g. NDM-1, AIM-1) but that they also possess efficient lactonase activity, an activity associated with quorum sensing. Here, we probed the structure and mechanism of these two enzymes using crystallographic, spectroscopic and fast kinetics techniques. Despite highly conserved active sites both enzymes demonstrate significant variations in their reaction mechanisms, highlighting both the extraordinary ability of MBLs to adapt to changing environmental conditions and the rather promiscuous acceptance of diverse substrates by these enzymes.

     
    more » « less
  5. Abstract

    TEM-1 β-lactamase degrades β-lactam antibiotics with a strong preference for penicillins. Sequence reconstruction studies indicate that it evolved from ancestral enzymes that degraded a variety of β-lactam antibiotics with moderate efficiency. This generalist to specialist conversion involved more than 100 mutational changes, but conserved fold and catalytic residues, suggesting a role for dynamics in enzyme evolution. Here, we develop a conformational dynamics computational approach to rationally mold a protein flexibility profile on the basis of a hinge-shift mechanism. By deliberately weighting and altering the conformational dynamics of a putative Precambrian β-lactamase, we engineer enzyme specificity that mimics the modern TEM-1 β-lactamase with only 21 amino acid replacements. Our conformational dynamics design thus re-enacts the evolutionary process and provides a rational allosteric approach for manipulating function while conserving the enzyme active site.

     
    more » « less