Abstract Deep eutectic solvents (DES) or eutectic mixtures prepared with a chiral component can lead to new chiral solvents with applications that include asymmetric synthesis and chiral light emitting materials. DES have low melting points, because of strong interactions, such as hydrogen bonding, between components of the mixture. Mixtures are prepared with ammonium salts, tetrabutylammonium chloride ([TBA]Cl) and choline chloride ([Ch]Cl), as hydrogen bond acceptor (HBA) and L‐lactic acid, L‐leucic acid, L‐ascorbic acid, R/S‐acetoxypropionic acid, and methyl‐(S)‐lactate as chiral hydrogen bond donors (HBD). Eight combinations of the HBAs and HBDs were prepared, and a racemic mixture of dissymmetric chiral europium complexes was dissolved in the mixtures. The circularly polarized luminescence (CPL) spectra were measured to determine the chiral discrimination by these chiral solvents. The CPL spectra show that the handedness of the chiral HBD is important to the chiral discrimination exhibited. However, the inversion of the sign of the CPL spectra in 1 : 3 [TBA]Cl:L‐lactic acid vs. 1 : 3 [Ch]Cl:L‐lactic acid, and 1 : 1.5 [Ch]Cl:L‐leucic acid vs. 1 : 1 [TBA]Cl:L‐leucic acid shows that the achiral HBA also plays a critical role in the handedness of the chiral discrimination by the chiral solvent.
more »
« less
High-throughput and data driven strategies for the design of deep-eutectic solvent electrolytes
Deep eutectic solvents (DESs) are an attractive class of materials with low toxicity, broad commercial availability, low costs and simple synthesis, which allows for tuning of their properties. We develop and demonstrate the use of high-throughput and data-driven strategies to accelerate the investigation of new DES formulations. A cheminformatics approach is used to outline a design space, which results in 3477 hydrogen bond donor (HBD) and 185 quaternary ammonium salt (QAS) molecules identified as good candidate components for DES. The synthesis methodology is then adapted to a high-throughput protocol using liquid handling robots for the rapid synthesis of DES combinations. High-throughput electrochemical characterization and melting point detection systems are used to measure key performance metrics. To demonstrate the new workflow, a total of 600 unique samples are prepared and characterized, corresponding to 50 unique DES combinations at 12 HBD/QAS molar ratios. After synthesis, a total of 230 samples are found liquid at room temperature and further characterized. Several DESs display conductivities above 1 mS cm −1 , with a maximum recorded conductivity of 13.7 mS cm −1 for the combination of acetylcholine chloride (20 mol%) and ethylene glycol. All liquid DES samples show stable potential windows greater than 3 V. We also demonstrate that these DESs are electrochemically limited by viscosity, both in the conductivity and in the limiting processes on their cyclic voltammograms. Comparison with literature reports shows good agreement for properties measured in the high-throughput study, which helps to validate the workflow. This work demonstrates new methods to accelerate the collection of key DES metrics, providing data to formulate robust property prediction models and obtaining insight on interactions between molecular components. Data-driven high-throughput experimentation strategies can accelerate DES development for a variety of applications. Moreover, these approaches can also be extended to tackle other materials challenges with large molecular design spaces.
more »
« less
- PAR ID:
- 10326913
- Date Published:
- Journal Name:
- Molecular Systems Design & Engineering
- ISSN:
- 2058-9689
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biomass‐derived deep eutectic solvents (DESs) have been introduced as promising pretreatment and fractionation solvents because of their mild processing conditions, easy synthesis, and green solvent components from biomass. In recent DES studies, solvent‐based third constituents like water, ethanol, and others improve the processibility of typical binary DESs. However, the impacts of these components are not well understood. Here, two solvent‐based constituents, including water and ethylene glycol, were applied to 3,4‐dihydroxybenzoic acid (DHBA)‐based DES system for improving the conversion efficiency of cellulose‐rich fraction and the properties of lignin fraction. Chemical composition, enzymatic digestibility, degree of polymerization of cellulose and physicochemical properties of lignin were used to evaluate the impact of each third constituent on biomass processing. Ternary ChCl‐DHBA DESs exhibited better performances in delignification, fermentable sugar production, and preservation of β‐O‐4 ether linkage in lignin compared with binary ChCl‐DHBA DES.more » « less
-
Abstract Species determination based on genetic evidence is an indispensable tool in archaeology, forensics, ecology, and food authentication. Most available analytical approaches involve compromises with regard to the number of detectable species, high cost due to low throughput, or a labor-intensive manual process. Here, we introduce “Species by Proteome INvestigation” (SPIN), a shotgun proteomics workflow for analyzing archaeological bone capable of querying over 150 mammalian species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rapid peptide chromatography and data-independent acquisition (DIA) with throughput of 200 samples per day reduce expensive MS time, whereas streamlined sample preparation and automated data interpretation save labor costs. We confirm the successful classification of known reference bones, including domestic species and great apes, beyond the taxonomic resolution of the conventional peptide mass fingerprinting (PMF)-based Zooarchaeology by Mass Spectrometry (ZooMS) method. In a blinded study of degraded Iron-Age material from Scandinavia, SPIN produces reproducible results between replicates, which are consistent with morphological analysis. Finally, we demonstrate the high throughput capabilities of the method in a high-degradation context by analyzing more than two hundred Middle and Upper Palaeolithic bones from Southern European sites with late Neanderthal occupation. While this initial study is focused on modern and archaeological mammalian bone, SPIN will be open and expandable to other biological tissues and taxa.more » « less
-
null (Ed.)Lignin nanomaterials have wide application prospects in the fields of cosmetics delivery, energy storage, and environmental governance. In this study, we developed a simple and sustainable synthesis approach to produce uniform lignin nanoparticles (LNPs) by dissolving industrial lignin in deep eutectic solvents (DESs) followed by a self-assembling process. LNPs with high yield could be obtained through nanoprecipitation. The LNPs were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). Distinct LNPs could be produced by changing the type of DES, lignin sources, pre-dropping lignin concentration, and the pH of the system. Their diameter is in the range of 20–200 nm and they show excellent dispersibility and superior long-term stability. The method of preparing LNPs from lignin–DES with water as an anti-solvent is simple, rapid, and environmentally friendly. The outcome aids to further the advancement of lignin-based nanotechnology.more » « less
-
Lipid screening of biological substrates is an important step during biomarker detection and identification. In this work, a fast workflow is described capable of rapid screening for lipid components from biological tissues at ambient pressure based on liquid microjunction extraction in tandem with nano-electrospray ionization (nESI) with ultra-high resolution mass spectrometry, i.e. , liquid extraction surface analysis (LESA) coupled to Fourier-transform ion cyclotron resonance (tandem) mass spectrometry (LESA-FT-ICR-MS/MS). Lipid profiles are presented for thin tissue sections of mouse brain (MB) and liver (ML) samples, analyzed in both positive and negative mode by data-dependent acquisition (DDA) tandem FT-ICR-MS/MS. Candidate assignments were based on fragmentation patterns using mostly SimLipid software and accurate mass using mostly the LipidMaps database (average sub-ppm mass error). A typical, single point surface analysis (<1 mm spatial sampling resolution) lasted less than 15 minutes and resulted in the assignment of (unique and mulitple) lipid identifications of ∼190 (MB) and ∼590 (ML) m / z values. Despite the biological complexity, this led to unique identifications of distinct lipid molecules (sub-ppm mass error) from 38 different lipid classes, corresponding to 10–30% of the lipid m / z identifications.more » « less
An official website of the United States government

