skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rethinking Sampled-Data Control for Unmanned Aircraft Systems
Unmanned aircraft systems are expected to provide both increasingly varied functionalities and outstanding application performances, utilizing the available resources. In this paper, we explore the recent advances and challenges at the intersection of real-time computing and control and show how rethinking sampling strategies can improve performance and resource utilization. We showcase a novel design framework, cyber-physical co-regulation, which can efficiently link together computational and physical characteristics of the system, increasing robust performance and avoiding pitfalls of event-triggered sampling strategies. A comparison experiment of different sampling and control strategies was conducted and analyzed. We demonstrate that co-regulation has resource savings similar to event-triggered sampling, but maintains the robustness of traditional fixed-periodic sampling forming a compelling alternative to traditional vehicle control design.  more » « less
Award ID(s):
2047971
PAR ID:
10326971
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
4
ISSN:
1424-8220
Page Range / eLocation ID:
1525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Intelligent utilization of resources and improved mission performance in an autonomous agent require consideration of cyber and physical resources. The allocation of these resources becomes more complex when the system expands from one agent to multiple agents, and the control shifts from centralized to decentralized. Consensus is a distributed algorithm that lets multiple agents agree on a shared value, but typically does not leverage mobility. We propose a coupled consensus control strategy that co-regulates computation, communication frequency, and connectivity of the agents to achieve faster convergence times at lower communication rates and computational costs. In this strategy, agents move towards a common location to increase connectivity. Simultaneously, the communication frequency is increased when the shared state error between an agent and its connected neighbors is high. When the shared state converges (i.e., consensus is reached), the agents withdraw to the initial positions and the communication frequency is decreased. Convergence properties of our algorithm are demonstrated under the proposed co-regulated control algorithm. We evaluated the proposed approach through a new set of cyber-physical, multi-agent metrics and demonstrated our approach in a simulation of unmanned aircraft systems measuring temperatures at multiple sites. The results demonstrate that, compared with fixed-rate and event-triggered consensus algorithms, our co-regulation scheme can achieve improved performance with fewer resources, while maintaining high reactivity to changes in the environment and system. 
    more » « less
  2. In this paper we develop four methods for proving stability for a subclass of co-regulated systems - finite-state, co-regulated systems with restrictions on possible sampling rates. "Co-regulation" is a control strategy we previously developed wherein cyber and physical effectors are dynamically adjusted in response to holistic system performance. The cyber effector, sampling rate, is adjusted in response to off-nominal conditions in the controlled system, and the physical effector adjusts control outputs corresponding to the current (changing) sampling rate. The resulting computer-control system is a discrete-time-varying system with changing zero-order holds and sampling periods, and unknown delays over discrete intervals. This makes performance guarantees such as stability difficult to obtain.We address this difficulty by drawing from specialized results in the control community to develop four methods for proving asymptotic stability of finite-state, co-regulated systems. Each successive method relaxes the assumptions needed to guarantee stability. This lays the groundwork for a more all-encompassing analytical framework for co-regulated systems. We use the results to demonstrate stability for a co-regulated multicopter unmanned aircraft system. 
    more » « less
  3. Deploying decentralized control strategies for outdoor multi-agent Uncrewed Aircraft Systems (UASs) is challenging due to timing variations, packet loss, and computing resource limitations. In this work we address robustness to these conditions through a novel co-regulated control strategy that varies the periodicity of control inputs and communication with other agents. Co-regulation is applied to a decentralized hierarchical controller consisting of a global component governing inter-group coordination to multiple targets while a local component governs intra-group coordination of the agents as they progress to the target of interest. The control gains are “gain scheduled” according to current conditions while a cyber controller schedules the control and communication tasks for execution based on swarm performance. The control gains are found via reinforcement learning and the entire algorithm is deployed on a swarm consisting of 7 custom agents. Our results show the impact of rethinking swarming algorithms with computation and communication resource limitations in mind and indicate we can provide exceptional swarm control utilizing fewer resources while also improving the quality of service for an onboard, anytime collision avoidance algorithm. 
    more » « less
  4. null (Ed.)
    In this paper, we introduce a distributed secondary voltage and frequency control scheme for an islanded ac microgrid under event-triggered communication. An integral type event-triggered mechanism is proposed by which each distributed generator (DG) periodically checks its triggering condition and determines whether to update its control inputs and broadcast its states to neighboring DGs. In contrast to existing event-triggered strategies on secondary control of microgrids, the proposed event-triggered mechanism is able to handle the consensus problem in case of asynchronous communication. Under the proposed sampled-data based event-triggered mechanism, DGs do not need to be synchronized to a common clock and each individual DG checks its triggering condition periodically, relying on its own clock. Furthermore, the proposed method efficiently reduces communication rate. We provide sufficient conditions under which microgrid's frequency and a critical bus voltage asymptotically converge to the nominal frequency and voltage, respectively. Finally, effectiveness of our proposed method is verified by testing different scenarios on an islanded ac microgrid benchmark in the MATLAB/Simulink environment as well as a hardware-in-the-loop (HIL) platform, where the physical system is modeled in the Opal-RT and the cyber system is realized in Raspberry Pis. 
    more » « less
  5. We propose a new concept named subschedulability to relax schedulability conditions on task sets in the context of scheduling and control co-design. Subschedulability is less conservative compared to schedulablity requirement with respect to network utilization. But it can still guarantee that all tasks can be executed before or within a bounded time interval after their deadlines. Based on the subschedulability concept, we derive an analytical timing model to check the sub-schedulability and perform online prediction of time-delays caused by real-time scheduling. A modified event-triggered contention-resolving MPC is presented to co-design the scheduling and control for the sub-schedulable control tasks. Simulation results are demonstrated to show the effectiveness of the proposed method. 
    more » « less