skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling for COVID-19 college reopening decisions: Cornell, a case study
We consider epidemiological modeling for the design of COVID-19 interventions in university populations, which have seen significant outbreaks during the pandemic. A central challenge is sensitivity of predictions to input parameters coupled with uncertainty about these parameters. Nearly 2 y into the pandemic, parameter uncertainty remains because of changes in vaccination efficacy, viral variants, and mask mandates, and because universities’ unique characteristics hinder translation from the general population: a high fraction of young people, who have higher rates of asymptomatic infection and social contact, as well as an enhanced ability to implement behavioral and testing interventions. We describe an epidemiological model that formed the basis for Cornell University’s decision to reopen for in-person instruction in fall 2020 and supported the design of an asymptomatic screening program instituted concurrently to prevent viral spread. We demonstrate how the structure of these decisions allowed risk to be minimized despite parameter uncertainty leading to an inability to make accurate point estimates and how this generalizes to other university settings. We find that once-per-week asymptomatic screening of vaccinated undergraduate students provides substantial value against the Delta variant, even if all students are vaccinated, and that more targeted testing of the most social vaccinated students provides further value.  more » « less
Award ID(s):
2035086 1839346
PAR ID:
10327036
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
2
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arunachalam, Viswanathan (Ed.)
    During the COVID-19 pandemic, the prevalence of asymptomatic cases challenged the reliability of epidemiological statistics in policymaking. To address this, we introducedcontagion potential(CP) as a continuous metric derived from sociodemographic and epidemiological data to quantify the infection risk posed by the asymptomatic within a region. However, CP estimation is hindered by incomplete or biased incidence data, where underreporting and testing constraints make direct estimation infeasible. To overcome this limitation, we employ a hypothesis-testing approach to infer CP from sampled data, allowing for robust estimation despite missing information. Even within the sample collected from spatial contact data, individuals possess partial knowledge of their neighborhoods, as their awareness is restricted to interactions captured by available tracking data. We introduce an adjustment factor that calibrates the sample CPs so that the sample is a reasonable estimate of the population CP. Further complicating estimation, biases in epidemiological and mobility data arise from heterogeneous reporting rates and sampling inconsistencies, which we address throughinverse probability weightingto enhance reliability. Using a spatial model for infection spread through social mixing and an optimization framework based on the SIRS epidemic model, we analyze real infection datasets from Italy, Germany, and Austria. Our findings demonstrate that statistical methods can achieve high-confidence CP estimates while accounting for variations in sample size, confidence level, mobility models, and viral strains. By assessing the effects of bias, social mixing, and sampling frequency, we propose statistical corrections to improve CP prediction accuracy. Finally, we discuss how reliable CP estimates can inform outbreak mitigation strategies despite the inherent uncertainties in epidemiological data. 
    more » « less
  2. Abstract The evolution of the COVID-19 pandemic is described through a time-dependent stochastic dynamic model in discrete time. The proposed multi-compartment model is expressed through a system of difference equations. Information on the social distancing measures and diagnostic testing rates are incorporated to characterize the dynamics of the various compartments of the model. In contrast with conventional epidemiological models, the proposed model involves interpretable temporally static and dynamic epidemiological rate parameters. A model fitting strategy built upon nonparametric smoothing is employed for estimating the time-varying parameters, while profiling over the time-independent parameters. Confidence bands of the parameters are obtained through a residual bootstrap procedure. A key feature of the methodology is its ability to estimate latent unobservable compartments such as the number of asymptomatic but infected individuals who are known to be the key vectors of COVID-19 spread. The nature of the disease dynamics is further quantified by relevant epidemiological markers that make use of the estimates of latent compartments. The methodology is applied to understand the true extent and dynamics of the pandemic in various states within the United States (US). 
    more » « less
  3. Abstract Objective: Current guidance states that asymptomatic screening for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) prior to admission to an acute-care setting is at the facility’s discretion. This study’s objective was to estimate the number of undetected cases of SARS-CoV-2 admitted as inpatients under 4 testing approaches and varying assumptions. Design and setting: Individual-based microsimulation of 104 North Carolina acute-care hospitals Patients: All simulated inpatient admissions to acute-care hospitals from December 15, 2021, to January 13, 2022 [ie, during the SARS-COV-2 ο (omicron) variant surge]. Interventions: We simulated (1) only testing symptomatic patients, (2) 1-stage antigen testing with no confirmatory polymerase chain reaction (PCR) test, (3) 1-stage antigen testing with a confirmatory PCR for negative results, and (4) serial antigen screening (ie, repeat antigen test 2 days after a negative result). Results: Over 1 month, there were 77,980 admissions: 13.7% for COVID-19, 4.3% with but not for COVID-19, and 82.0% for non–COVID-19 indications without current infection. Without asymptomatic screening, 1,089 (credible interval [CI], 946–1,253) total SARS-CoV-2 infections (7.72%) went undetected. With 1-stage antigen screening, 734 (CI, 638–845) asymptomatic infections (67.4%) were detected, with 1,277 false positives. With combined antigen and PCR screening, 1,007 (CI, 875–1,159) asymptomatic infections (92.5%) were detected, with 5,578 false positives. A serial antigen testing policy detected 973 (CI, 845–1,120) asymptomatic infections (89.4%), with 2,529 false positives. Conclusions: Serial antigen testing identified >85% of asymptomatic infections and resulted in fewer false positives with less cost per identified infection compared to combined antigen plus PCR testing. 
    more » « less
  4. Abd El-Aty, A. M. (Ed.)
    Background Higher viral loads in SARS-CoV-2 infections may be linked to more rapid spread of emerging variants of concern (VOC). Rapid detection and isolation of cases with highest viral loads, even in pre- or asymptomatic individuals, is essential for the mitigation of community outbreaks. Methods and findings In this study, we analyze Ct values from 1297 SARS-CoV-2 positive patient saliva samples collected at the Clemson University testing lab in upstate South Carolina. Samples were identified as positive using RT-qPCR, and clade information was determined via whole genome sequencing at nearby commercial labs. We also obtained patient-reported information on symptoms and exposures at the time of testing. The lowest Ct values were observed among those infected with Delta (median: 22.61, IQR: 16.72–28.51), followed by Alpha (23.93, 18.36–28.49), Gamma (24.74, 18.84–30.64), and the more historic clade 20G (25.21, 20.50–29.916). There was a statistically significant difference in Ct value between Delta and all other clades (all p.adj<0.01), as well as between Alpha and 20G (p.adj<0.05). Additionally, pre- or asymptomatic patients (n = 1093) showed the same statistical differences between Delta and all other clades (all p.adj<0.01); however, symptomatic patients (n = 167) did not show any significant differences between clades. Our weekly testing strategy ensures that cases are caught earlier in the infection cycle, often before symptoms are present, reducing this sample size in our population. Conclusions COVID-19 variants Alpha and Delta have substantially higher viral loads in saliva compared to more historic clades. This trend is especially observed in individuals who are pre- or asymptomatic, which provides evidence supporting higher transmissibility and more rapid spread of emerging variants. Understanding the viral load of variants spreading within a community can inform public policy and clinical decision making. 
    more » « less
  5. The integration of viral genomic data into public health surveillance has revolutionized our ability to track and forecast infectious disease dynamics. This review addresses two critical aspects of infectious disease forecasting and monitoring: the methodological workflow for epidemic forecasting and the transformative role of molecular surveillance. We first present a detailed approach for validating epidemic models, emphasizing an iterative workflow that utilizes ordinary differential equation (ODE)-based models to investigate and forecast disease dynamics. We recommend a more structured approach to model validation, systematically addressing key stages such as model calibration, assessment of structural and practical parameter identifiability, and effective uncertainty propagation in forecasts. Furthermore, we underscore the importance of incorporating multiple data streams by applying both simulated and real epidemiological data from the COVID-19 pandemic to produce more reliable forecasts with quantified uncertainty. Additionally, we emphasize the pivotal role of viral genomic data in tracking transmission dynamics and pathogen evolution. By leveraging advanced computational tools such as Bayesian phylogenetics and phylodynamics, researchers can more accurately estimate transmission clusters and reconstruct outbreak histories, thereby improving data-driven modeling and forecasting and informing targeted public health interventions. Finally, we discuss the transformative potential of integrating molecular epidemiology with mathematical modeling to complement and enhance epidemic forecasting and optimize public health strategies. 
    more » « less