skip to main content


Title: Orbital phase-driven biases in galactic mass constraints from stellar streams
ABSTRACT One of the most promising tracers of the Galactic potential in the halo region is stellar streams. However, individual stream fits can be limited by systematic biases. To study these individual stream systematics, we fit streams in Milky Way-like galaxies from Feedback In Realistic Environments cosmological galaxy formation simulations with an analytical gravitational potential by maximizing the clustering of stream stars in action space. We show that for coherent streams the quality of the constraints depends on the orbital phase of the observed stream stars, despite the fact that the phase information is discarded in action-clustering methods. Streams on intermediate phases give the most accurate results, whereas pericentre streams can be highly biased. This behaviour is tied to the amount of correlation present between positions and momenta in each stream’s data: weak correlation in pericentre streams prohibits efficient differentiation between potentials, while strong correlation in intermediate streams promotes it. Although simultaneous fitting of multiple streams is generally prescribed as the remedy to combat individual stream biases, we find that combining multiple pericentric streams is not enough to yield a bias-free result. We finally show that adopting the two-component Stäckel model does not fundamentally induce a biased mass estimate. With our full data set of two multiwrap streams, we recovered the true rotation curve of the simulated galaxy within $12{{\ \rm per\ cent}}$ over the entire range of radii covered by our set of stars (10–176 kpc) and within $6.5{{\ \rm per\ cent}}$ between the 5 and 95 percentile distance range (23–109 kpc).  more » « less
Award ID(s):
2007232
NSF-PAR ID:
10327059
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
5365 to 5381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Stream stars removed by tides from their progenitor satellite galaxy or globular cluster act as a group of test particles on neighbouring orbits, probing the gravitational field of the Milky Way. While constraints from individual streams have been shown to be susceptible to biases, combining several streams from orbits with various distances reduces these biases. We fit a common gravitational potential to multiple stellar streams simultaneously by maximizing the clustering of the stream stars in action space. We apply this technique to members of the GD-1, Palomar 5 (Pal 5), Orphan, and Helmi streams, exploiting both the individual and combined data sets. We describe the Galactic potential with a Stäckel model, and vary up to five parameters simultaneously. We find that we can only constrain the enclosed mass, and that the strongest constraints come from the GD-1, Pal 5, and Orphan streams whose combined data set yields $M(\lt 20\, \mathrm{kpc}) = 2.96^{+0.25}_{-0.26} \times 10^{11} \, \mathrm{ M}_{\odot}$. When including the Helmi stream in the data set, the mass uncertainty increases to $M(\lt 20\, \mathrm{kpc}) = 3.12^{+3.21}_{-0.46} \times 10^{11} \, \mathrm{M}_{\odot}$. 
    more » « less
  2. ABSTRACT

    Understanding the evolution of satellite galaxies of the Milky Way (MW) and M31 requires modelling their orbital histories across cosmic time. Many works that model satellite orbits incorrectly assume or approximate that the host halo gravitational potential is fixed in time and is spherically symmetric or axisymmetric. We rigorously benchmark the accuracy of such models against the FIRE-2 cosmological baryonic simulations of MW/M31-mass haloes. When a typical surviving satellite fell in ($3.4\!-\!9.7\, \rm {Gyr}$ ago), the host halo mass and radius were typically 26–86 per cent of their values today, respectively. Most of this mass growth of the host occurred at small distances, $r\lesssim 50\, \rm {kpc}$, opposite to dark matter only simulations, which experience almost no growth at small radii. We fit a near-exact axisymmetric gravitational potential to each host at z = 0 and backward integrate the orbits of satellites in this static potential, comparing against the true orbit histories in the simulations. Orbital energy and angular momentum are not well conserved throughout an orbital history, varying by 25 per cent from their current values already $1.6\!-\!4.7\, \rm {Gyr}$ ago. Most orbital properties are minimally biased, ≲10 per cent, when averaged across the satellite population as a whole. However, for a single satellite, the uncertainties are large: recent orbital properties, like the most recent pericentre distance, typically are ≈20 per cent uncertain, while earlier events, like the minimum pericentre or the infall time, are ≈40–80 per cent uncertain. Furthermore, these biases and uncertainties are lower limits, given that we use near-exact host mass profiles at z = 0.

     
    more » « less
  3. null (Ed.)
    ABSTRACT In this work, we combine spectroscopic information from the SkyMapper survey for Extremely Metal-Poor stars and astrometry from Gaia DR2 to investigate the kinematics of a sample of 475 stars with a metallicity range of $-6.5 \le \rm [Fe/H] \le -2.05$ dex. Exploiting the action map, we identify 16 and 40 stars dynamically consistent with the Gaia Sausage and Gaia Sequoia accretion events, respectively. The most metal poor of these candidates have metallicities of $\rm [Fe/H]=-3.31\, \mathrm{ and }\, -3.74$, respectively, helping to define the low-metallicity tail of the progenitors involved in the accretion events. We also find, consistent with other studies, that ∼21 per cent of the sample have orbits that remain confined to within 3 kpc of the Galactic plane, that is, |Zmax| ≤ 3 kpc. Of particular interest is a subsample (∼11 per cent of the total) of low |Zmax| stars with low eccentricities and prograde motions. The lowest metallicity of these stars has [Fe/H] = –4.30 and the subsample is best interpreted as the very low-metallicity tail of the metal-weak thick disc population. The low |Zmax|, low eccentricity stars with retrograde orbits are likely accreted, while the low |Zmax|, high eccentricity pro- and retrograde stars are plausibly associated with the Gaia Sausage system. We find that a small fraction of our sample (∼4 per cent of the total) is likely escaping from the Galaxy, and postulate that these stars have gained energy from gravitational interactions that occur when infalling dwarf galaxies are tidally disrupted. 
    more » « less
  4. ABSTRACT It remains a major challenge to derive a theory of cloud-scale ($\lesssim100$ pc) star formation and feedback, describing how galaxies convert gas into stars as a function of the galactic environment. Progress has been hampered by a lack of robust empirical constraints on the giant molecular cloud (GMC) lifecycle. We address this problem by systematically applying a new statistical method for measuring the evolutionary timeline of the GMC lifecycle, star formation, and feedback to a sample of nine nearby disc galaxies, observed as part of the PHANGS-ALMA survey. We measure the spatially resolved (∼100 pc) CO-to-H α flux ratio and find a universal de-correlation between molecular gas and young stars on GMC scales, allowing us to quantify the underlying evolutionary timeline. GMC lifetimes are short, typically $10\!-\!30\,{\rm Myr}$, and exhibit environmental variation, between and within galaxies. At kpc-scale molecular gas surface densities $\Sigma _{\rm H_2}\ge 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$, the GMC lifetime correlates with time-scales for galactic dynamical processes, whereas at $\Sigma _{\rm H_2}\le 8\,\rm {M_\odot}\,{{\rm pc}}^{-2}$ GMCs decouple from galactic dynamics and live for an internal dynamical time-scale. After a long inert phase without massive star formation traced by H α (75–90 per cent of the cloud lifetime), GMCs disperse within just $1\!-\!5\,{\rm Myr}$ once massive stars emerge. The dispersal is most likely due to early stellar feedback, causing GMCs to achieve integrated star formation efficiencies of 4–10 per cent. These results show that galactic star formation is governed by cloud-scale, environmentally dependent, dynamical processes driving rapid evolutionary cycling. GMCs and H ii regions are the fundamental units undergoing these lifecycles, with mean separations of $100\!-\!300\,{{\rm pc}}$ in star-forming discs. Future work should characterize the multiscale physics and mass flows driving these lifecycles. 
    more » « less
  5. ABSTRACT

    Observational studies are finding stars believed to be relics of the earliest stages of hierarchical mass assembly of the Milky Way (i.e. proto-galaxy). In this work, we contextualize these findings by studying the masses, ages, spatial distributions, morphology, kinematics, and chemical compositions of proto-galaxy populations from the 13 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. Our findings indicate that proto-Milky Way populations: (i) can have a stellar mass range between 1 × 108 < M⋆ < 2 × 1010 [M⊙], a virial mass range between 3 × 1010 < M⋆ < 6 × 1011 [M⊙], and be as young as 8 ≲ Age ≲ 12.8 [Gyr] (1 ≲ z ≲ 6); (ii) are pre-dominantly centrally concentrated, with $\sim 50~{{\ \rm per\ cent}}$ of the stars contained within 5–10 kpc; (iii) on average show weak but systematic net rotation in the plane of the host’s disc at z = 0 (i.e. 0.25 ≲ 〈κ/κdisc〉 ≲ 0.8); (iv) present [α/Fe]-[Fe/H] compositions that overlap with the metal-poor tail of the host’s old disc; and (v) tend to assemble slightly earlier in Local Group-like environments than in systems in isolation. Interestingly, we find that $\sim 60~{{\ \rm per\ cent}}$ of the proto-Milky Way galaxies are comprised by 1 dominant system (1/5 ≲M⋆/M⋆, proto-MilkyWay≲ 4/5) and 4–5 lower mass systems (M⋆/M⋆, proto-MilkyWay≲ 1/10); the other $\sim 40~{{\ \rm per\ cent}}$ are comprised by 2 dominant systems and 3–4 lower mass systems. These massive/dominant proto-Milky Way fragments can be distinguished from the lower mass ones in chemical-kinematic samples, but appear (qualitatively) indistinguishable from one another. Our results could help observational studies disentangle if the Milky Way formed from one or two dominant systems.

     
    more » « less