skip to main content


Title: Teachers’ Conceptualizations of Computational and Mathematical Thinking
The importance of integrating computational thinking (CT) into existing school structures, like core content domains, has emerged from efforts to improve computer science education in the U.S. In the past, computer science has often been treated as an elective or enrichment activity, which limits students’ exposure to foundational computing ideas, especially in underserved schools. However, given the ubiquity technology plays in our lives, it is imperative that all students have access to CT. Few studies have focused on how pre-service teachers (PSTs) learn about CT. Some researchers argue that CT integration into K-12 education belongs in teacher preparation programs and that teacher educators should develop courses aimed at supporting PSTs’ understanding of CT in the context of schools. This paper explores the ways in which PSTs begin to understand CT and how they work to integrate CT into their core subject areas.  more » « less
Award ID(s):
1942580
NSF-PAR ID:
10327070
Author(s) / Creator(s):
; ; ;
Editor(s):
Gresalfi, M. and
Date Published:
Journal Name:
International Conference of the Learning Sciences
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incorporating computational thinking (CT) ideas into core subjects, such as mathematics and science, is one way of bringing early computer science (CS) education into elementary school. Minimal research has explored how teachers can translate their knowledge of CT into practice to create opportunities for their students to engage in CT during their math and science lessons. Such information can support the creation of quality professional development experiences for teachers. We analyzed how eight elementary teachers created opportunities for their students to engage in four CT practices (abstraction, decomposition, debugging, and patterns) during unplugged mathematics and science activities. We identified three strategies used by these teachers to create CT opportunities for their students: framing, prompting, and inviting reflection. Further, we grouped teachers into four profiles of implementation according to how they used these three strategies. We call the four profiles (1) presenting CT as general problem-solving strategies, (2) using CT to structure lessons, (3) highlighting CT through prompting, and (4) using CT to guide teacher planning. We discuss the implications of these results for professional development and student experiences. 
    more » « less
  2. null (Ed.)
    A key strategy for bringing computer science (CS) education to all students is the integration of computational thinking (CT) into core curriculum in elementary school. But teachers want to know how they can do this on top of their existing priorities. In this paper, we describe how our research-practice partnership is working to motivate, prepare, and support an elementary school to integrate equitable and inclusive computer science into core curriculum. Data were collected from teachers at a K-5 school where 65% of students are Hispanic or Latinx, 46% are English Learners, and 65% are eligible for free or reduced lunch. Data included semi-structured interviews, educators’ written reflections, and observations of classroom implementation and professional development. The findings show how the school is building buy-in and capacity among teachers by using a coaching cycle led by a Teacher on Special Assignment. The cycle of preparation, implementation, and reflection demystifies CS by helping teachers design, test, and revise coherent lesson sequences that integrate CT into their lessons. Contrasting case studies are used to illustrate what teachers learned from the cycle, including the teachers’ reasons for the integration, adaptations they made to promote equity, what the teachers noticed about their students engaging in CT, and their next steps. We discuss the strengths and the limitations of this approach to bringing CS for All. 
    more » « less
  3. null (Ed.)
    Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction. 
    more » « less
  4. With a national emphasis on integrated science, technology, engineering, and mathematics (STEM) education in K-16 courses, incorporating technology in a meaningful way is critical. This research examines whether STEM and non-STEM teachers were able to incorporate technology in STEM courses successfully with sufficient professional development. The teachers in this study consisted of faculty from middle schools, high schools, and colleges recruited for STEM Guitar Building institutes held between 2013 and 2016. Each teacher participated in a 50-hour professional development opportunity in the manufacture of a solid-body electric guitar and received instruction on how to teach integrated STEM Modular Learning Activities (MLAs), which are aligned with the Common Core mathematics standards and the Next Generation Science Standards (NGSS). The data collected include pre- and postassessment from 769 students in three grade bands (grades 6-8, 9-12, and undergraduate level from 15 states). The results showed statistically significant gains at the p < 0.05 level across all 12 of the core MLAs, with no statistically significant difference between STEM and non-STEM instructors for all except two MLAs. The two MLAs that did reveal a statistically significant difference were more technical—Set Up and Computer Aided Design/Computer Aided Manufacturing Systems (CAD/CAM). These results show non-STEM and STEM teachers alike in this study were able to successfully incorporate technology in NGSS-aligned integrated STEM lessons, as evidenced by student learning gains. 
    more » « less
  5. Calls for a “practice-based” approach to teacher education have become common in scholarship on teacher education, and preservice-teaching (PST) mathematics programs are increasingly heeding this call. Practice-based teacher education (PBTE) moves beyond standard approaches to teacher education in which PSTs learn about teaching in ways they are then expected to apply in practice and toward an approach that provides PSTs opportunities to gain experience in particular core practices in ways that approximate enactment in the classroom. A growing body of research suggests that teachers’ responses, including the questions they ask, can help students’ develop content knowledge and proficiency in mathematics and science practices in the classroom. However, despite evidence that PSTs can notice students’ thinking in various activities in their preparation programs, it is not clear that they are sufficiently well-prepared to propose quality responses before entering the classroom. In this paper, we describe two different approaches that we have taken to provide support for quality teacher questioning in the LessonSketch environment. From our results, we develop a hypothesis that a pedagogical approach that primes novices to notice model questioning can support a stance of focusing on the substance of students’ thinking and probing rather than guiding students’ thinking in their proposed questions. 
    more » « less