skip to main content


Title: Achieving CSforAll: Preparing Special Education Pre-service Teachers to Bring Computing to Students with Disabilities
While computational thinking has gained popularity in K-12 schools to increase access to computing tools and practices, there is still limited understanding on how to broaden participation of students with disabilities in computational thinking (CT). One approach to increasing access to computing to students with disabilities is to educate future special education teachers to bring CT into their instruction. This study examined the influence of integrating CT into assistive technology course for special education pre-service teachers. Our results suggest that integrating CT into special educa- tion teacher preparation coursework can have a positive impact on how pre-service teachers see the value of bringing computational practices to students with disabilities.  more » « less
Award ID(s):
1936440
PAR ID:
10353302
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Technical Symposium on Computer Science Education
Page Range / eLocation ID:
196 to 201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities. 
    more » « less
  2. Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities.

     
    more » « less
  3. Gresalfi, M. and (Ed.)
    The importance of integrating computational thinking (CT) into existing school structures, like core content domains, has emerged from efforts to improve computer science education in the U.S. In the past, computer science has often been treated as an elective or enrichment activity, which limits students’ exposure to foundational computing ideas, especially in underserved schools. However, given the ubiquity technology plays in our lives, it is imperative that all students have access to CT. Few studies have focused on how pre-service teachers (PSTs) learn about CT. Some researchers argue that CT integration into K-12 education belongs in teacher preparation programs and that teacher educators should develop courses aimed at supporting PSTs’ understanding of CT in the context of schools. This paper explores the ways in which PSTs begin to understand CT and how they work to integrate CT into their core subject areas. 
    more » « less
  4. Posing questions is a direct way for teachers to push students to verbalize justifications and make connections among ideas—a crucial component of giving students with learning disabilities access to high levels of mathematical reasoning—but this skill is difficult to learn. We recruited four pre-service special education teachers to provide 1-1 algebra tutoring to students with learning disabilities while receiving instruction related to posing mathematics questions and supporting students’ reasoning. The pre-service teachers increased their frequency of questions overall and of questions that probed students’ thinking or explored mathematical relationships. Students gave correct and complete responses to these more complex questions approximately half of the time; however, pre-service teachers most often reduced the complexity of their questions when students gave incomplete responses. The findings of this study illustrate the potential for pre-service special education teachers to develop questioning routines that engage students with learning disabilities in mathematical reasoning while scaffolding their progress toward new understanding.

     
    more » « less
  5. With computational thinking (CT) emerging as a prominent component of 21st century science education, equipping teachers with the necessary tools to integrate CT into science lessons becomes increasingly important. One of these tools is confidence in their ability to carry out the integration of CT. This confidence is conceptualized as self-efficacy: the belief in one’s ability to perform a specific task in a specific context. Self-reported self-efficacy in teaching has shown promise as a measure of future behavior and is linked to teacher performance. Current measures of teacher self-efficacy to integrate CT are limited, however, by narrow conceptualizations of CT, oversight of survey design research, and limited evidence of instrument validity. We designed a valid and reliable measure of Teacher Self-Efficacy for integrating Computational Thinking in Science (T-SelECTS) that fits a single latent factor structure. To demonstrate the instrument’s value, we collected data from 58 pre-service teachers who participated in a CT module within their science methods course at a large Mid-Atlantic university. We found evidence of significant development in pre-service teachers’ self-efficacy for integrating CT into science instruction. We discuss how the T-SelECTS instrument could be used in teacher education courses and professional development to measure change in self-efficacy. 
    more » « less