Abstract The timing and progression of the spring thaw transition in high northern latitudes (HNL) coincides with warmer temperatures and landscape thawing, promoting increased soil moisture and growing season onset of gross primary productivity (GPP), heterotrophic respiration (HR), and evapotranspiration (ET). However, the relative order and spatial pattern of these events is uncertain due to vast size and remoteness of the HNL. We utilized satellite environmental data records (EDRs) derived from complementary passive microwave and optical sensors to assess the progression of spring transition events across Alaska and Northern Canada from 2016 to 2020. Selected EDRs included land surface and soil freeze‐thaw status, solar‐induced chlorophyll fluorescence (SIF) signifying canopy photosynthesis, root zone soil moisture (RZSM), and GPP, HR, and ET as indicators of ecosystem carbon and water‐energy fluxes. The EDR spring transition maps showed thawing as a precursor to rising RZSM and growing season onset. Thaw timing was closely associated with ecosystem activation from winter dormancy, including seasonal increases in SIF, GPP, and ET. The HR onset occurred closer to soil thawing and prior to GPP activation, reducing spring carbon (CO2) sink potential. The mean duration of the spring transition spanned ∼6 ± 1.5 weeks between initial and final onset events. Spring thaw timing and maximum RZSM were closely related to active layer thickness in HNL permafrost zones, with deeper active layers showing generally earlier thawing and greater RZSM. Our results confirm the utility of combined satellite EDRs for regional monitoring and better understanding of the complexity of the spring transition.
more »
« less
Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra
Abstract Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP,Reco, and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.
more »
« less
- PAR ID:
- 10469569
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 29
- Issue:
- 22
- ISSN:
- 1354-1013
- Format(s):
- Medium: X Size: p. 6286-6302
- Size(s):
- p. 6286-6302
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Permafrost thaw is typically measured with active layer thickness, or the maximum seasonal thaw measured from the ground surface. However, previous work has shown that this measurement alone fails to account for ground subsidence and therefore underestimates permafrost thaw. To determine the impact of subsidence on observed permafrost thaw and thawed soil carbon stocks, we quantified subsidence using high‐accuracy GPS and identified its environmental drivers in a permafrost warming experiment near the southern limit of permafrost in Alaska. With permafrost temperatures near 0°C, 10.8 cm of subsidence was observed in control plots over 9 years. Experimental air and soil warming increased subsidence by five times and created inundated microsites. Across treatments, ice and soil loss drove 85–91% and 9–15% of subsidence, respectively. Accounting for subsidence, permafrost thawed between 19% (control) and 49% (warming) deeper than active layer thickness indicated, and the amount of newly thawed carbon within the active layer was between 37% (control) and 113% (warming) greater. As additional carbon thaws as the active layer deepens, carbon fluxes to the atmosphere and lateral transport of carbon in groundwater could increase. The magnitude of this impact is uncertain at the landscape scale, though, due to limited subsidence measurements. Therefore, to determine the full extent of permafrost thaw across the circumpolar region and its feedback on the carbon cycle, it is necessary to quantify subsidence more broadly across the circumpolar region.more » « less
-
Soil nutrients cause threefold increase in pathogen and herbivore impacts on grassland plant biomassAbstract A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.more » « less
-
Abstract The eddy covariance (EC) method is one of the most widely used approaches to quantify surface‐atmosphere fluxes. However, scaling up from a single EC tower to the landscape remains an open challenge. To address this, we used 63 site years of data to examine simulated annual and growing season sums of carbon fluxes from three paired land‐cover type sites of corn, restored‐prairie, and switchgrass ecosystems. This was also done across the landscape by modeling fluxes using different land‐cover type input data. An artificial neural network (ANN) approach was used to model net ecosystem exchange (NEE), ecosystem respiration (Reco), and gross primary production (GPP) at one paired site using environmental observations from the second site only. With a mean spatial separation of 11 km between paired sites, we were able to model annual sums of NEE,Reco, and GPP with uncertainties of 20%, 22%, and 8%, respectively, relative to observation sums. When considering the growing season only, model uncertainties were 17%, 22%, and 9%, respectively for the three flux terms. We also show that ANN models can estimate sums ofRecoand GPP fluxes without needing the constraint of similar land‐cover‐type, with annual uncertainties of 12% and 10%. These results provide new insights to scaling up observations from one EC site beyond the footprint of the EC tower to multiple land‐cover types across the landscape.more » « less
-
Partitioning Net Ecosystem Exchange (NEE) of CO 2 Using Solar‐Induced Chlorophyll Fluorescence (SIF)Abstract Accurate partitioning of net ecosystem exchange (NEE) of CO2to gross primary production (GPP) and ecosystem respiration (Reco) is crucial for understanding carbon cycle dynamics under changing climate. However, it remains as a long‐standing problem in global ecology due to lack of independent constraining information for the two offsetting component fluxes. solar‐induced chlorophyll fluorescence (SIF), a mechanistic proxy for photosynthesis, holds great promise to improve NEE partitioning by constraining GPP. We developed a parsimonious SIF‐based approach for NEE partitioning and examined its performance using synthetic simulations and field measurements. This approach outperforms conventional approaches in reproducing simulated GPP andReco, especially under high vapor pressure deficit. For field measurements, it results in lower daytime GPP andRecothan conventional approaches. This study made the first attempt to demonstrate SIF's potential for improving NEE partitioning accuracy and sets the stage for future efforts to examine its robustness and scalability under real‐world environmental conditions.more » « less