skip to main content

This content will become publicly available on September 11, 2024

Title: Abrupt permafrost thaw drives spatially heterogeneous soil moisture and carbon dioxide fluxes in upland tundra

Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP,Reco, and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.

more » « less
Award ID(s):
2224776 1636476
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Medium: X Size: p. 6286-6302
["p. 6286-6302"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rapid Arctic warming is causing permafrost to thaw and exposing large quantities of soil organic carbon (C) to potential decomposition. In dry upland tundra systems, subsidence from thawing permafrost can increase surface soil moisture resulting in higher methane (CH4) emissions from newly waterlogged soils. The proportion of C released as carbon dioxide (CO2) and CH4remains uncertain as previously dry landscapes transition to a thawed state, resulting in both wetter and drier microsites. To address how thaw and moisture interact to affect total C emissions, we measured CH4and CO2emissions from paired chambers across thaw and moisture gradients created by nine years of experimental soil warming in interior Alaska. Cumulative growing season (May–September) CH4emissions were elevated at both wetter (216.1–1,099.4 mg CH4‐C m−2) and drier (129.7–392.3 mg CH4‐C m−2) deeply thawed microsites relative to shallow thaw (55.6–215.7 mg CH4‐C m−2) and increased with higher deep soil temperatures and permafrost thaw depth. Interannual variability in CH4emissions was driven by wet conditions in graminoid‐dominated plots that generated >70% of emissions in a wet year. Shoulder season emissions were equivalent to growing season CH4emissions rates in the deeply thawed, warmed soils, highlighting the importance of non‐growing season CH4emissions. Net C sink potential was reduced in deeply thawed wet plots by 4%–42%, and by 3.5%–8% in deeply thawed drier plots due to anaerobic respiration, suggesting that some dry upland tundra landscapes may transition into stronger CH4sources in a warming Arctic.

    more » « less
  2. Abstract

    Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year‐round eddy covariance estimates of net carbon dioxide (CO2), mid‐April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow‐season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2(13–59 g C m−2 year−1) and stronger sources of CH4(11–14 g CH4 m−2from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4emitter. These results suggest that the future carbon‐source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long‐term measurements to identify carbon cycle process changes in a warming climate.

    more » « less
  3. Abstract

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9‐years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing seasonFCH4,GPPandNEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing seasonGPPin subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence onER, but dominant contribution toERswitched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter‐annual lag effects onERin this rich fen, as has been observed in several nutrient‐poor peatlands. WhileERwas dependent on soil temperatures at 2 cm depth,FCH4was linked to soil temperatures at 25 cm. Inter‐annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higherFCH4in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short‐term fluctuations in wetness caused significant lag effects onFCH4, but droughts caused no inter‐annual lag effects onFCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.

    more » « less
  4. Abstract

    A combination of theory and experiments predicts that increasing soil nutrients will modify herbivore and microbial impacts on ecosystem carbon cycling.

    However, few studies of herbivores and soil nutrients have measured both ecosystem carbon fluxes and carbon pools. Even more rare are studies manipulating microbes and nutrients that look at ecosystem carbon cycling responses.

    We added nutrients to a long‐term, experiment manipulating foliar fungi, soil fungi, mammalian herbivores and arthropods in a low fertility grassland. We measured gross primary production (GPP), ecosystem respiration (ER), net ecosystem exchange (NEE) and plant biomass throughout the growing season to determine how nutrients modify consumer impacts on ecosystem carbon cycling.

    Nutrient addition increased above‐ground biomass and GPP, but not ER, resulting in an increase in ecosystem carbon uptake rate. Reducing foliar fungi and arthropods increased plant biomass. Nutrients amplified consumer effects on plant biomass, such that arthropods and foliar fungi had a threefold larger impact on above‐ground biomass in fertilized plots.

    Synthesis. Our work demonstrates that throughout the growing season soil resources modify carbon uptake rates as well as animal and fungal impacts on plant biomass production. Taken together, ongoing nutrient pollution may increase ecosystem carbon uptake and drive fungi and herbivores to have larger impacts on plant biomass production.

    more » « less
  5. Abstract. Thaw and release of permafrost carbon (C) due to climate change is likely tooffset increased vegetation C uptake in northern high-latitude (NHL)terrestrial ecosystems. Models project that this permafrost C feedback mayact as a slow leak, in which case detection and attribution of the feedbackmay be difficult. The formation of talik, a subsurface layer of perenniallythawed soil, can accelerate permafrost degradation and soil respiration,ultimately shifting the C balance of permafrost-affected ecosystems fromlong-term C sinks to long-term C sources. It is imperative to understand andcharacterize mechanistic links between talik, permafrost thaw, andrespiration of deep soil C to detect and quantify the permafrost C feedback.Here, we use the Community Land Model (CLM) version 4.5, a permafrost andbiogeochemistry model, in comparison to long-term deep borehole data alongNorth American and Siberian transects, to investigate thaw-driven C sourcesin NHL (>55N) from 2000 to 2300. Widespread talik at depth isprojected across most of the NHL permafrost region(14million km2) by 2300, 6.2million km2 of which isprojected to become a long-term C source, emitting 10Pg C by 2100,50Pg C by 2200, and 120Pg C by 2300, with few signs ofslowing. Roughly half of the projected C source region is in predominantlywarm sub-Arctic permafrost following talik onset. This region emits only20Pg C by 2300, but the CLM4.5 estimate may be biased low by notaccounting for deep C in yedoma. Accelerated decomposition of deep soilC following talik onset shifts the ecosystem C balance away from surfacedominant processes (photosynthesis and litter respiration), butsink-to-source transition dates are delayed by 20–200 years by highecosystem productivity, such that talik peaks early (2050s, although boreholedata suggest sooner) and C source transition peaks late(2150–2200). The remaining C source region in cold northern Arcticpermafrost, which shifts to a net source early (late 21st century), emits5 times more C (95Pg C) by 2300, and prior to talik formation dueto the high decomposition rates of shallow, young C in organic-rich soilscoupled with low productivity. Our results provide important clues signalingimminent talik onset and C source transition, including (1) late cold-season(January–February) soil warming at depth (2m),(2) increasing cold-season emissions (November–April), and (3) enhancedrespiration of deep, old C in warm permafrost and young, shallow C in organic-rich cold permafrost soils. Our results suggest a mosaic of processes thatgovern carbon source-to-sink transitions at high latitudes and emphasize theurgency of monitoring soil thermal profiles, organic C age and content, cold-season CO2 emissions, andatmospheric 14CO2 as key indicatorsof the permafrost C feedback.

    more » « less