skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine Learning-based Vulnerability Study of Interpose PUFs as Security Primitives for IoT Networks
Security is of importance for communication networks, and many network nodes, like sensors and IoT devices, are resource-constrained. Physical Unclonable Functions (PUFs) leverage physical variations of the integrated circuits to produce responses unique to individual circuits and have the potential for delivering security for low-cost networks. But before a PUF can be adopted for security applications, all security vulnerabilities must be discovered. Recently, a new PUF known as Interpose PUF (IPUF) was proposed, which was tested to be secure against reliability-based modeling attacks and machine learning attacks when the attacked IPUF is of small size. A recent study showed IPUFs succumbed to a divide-and-conquer attack, and the attack method requires the position of the interpose bit known to the attacker, a condition that can be easily obfuscated by using a random interpose position. Thus, large IPUFs may still remain secure against all known modeling attacks if the interpose position is unknown to attackers. In this paper, we present a new modeling attack method of IPUFs using multilayer neural networks, and the attack method requires no knowledge of the interpose position. Our attack was tested on simulated IPUFs and silicon IPUFs implemented on FPGAs, and the results showed that many IPUFs which were resilient against existing attacks cannot withstand our new attack method, revealing a new vulnerability of IPUFs by re-defining the boundary between secure and insecure regions in the IPUF parameter space.  more » « less
Award ID(s):
2103563 1526055
PAR ID:
10327275
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Networking, Architecture and Storage (NAS)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amsaad, F; Abdelgawad, A; Jamil, A (Ed.)
    Fault Injection attack is a type of side-channel attack on the Physical Unclonable Function (PUF) module that can induce faults in the PUF response by manipulating the PUF circuit behavior through voltage glitches, laser attacks, temperature manipulations, or any other attacks potentially leading to information loss or security system failure. This type of attack exposes the physical characteristics of PUFs that can be analyzed to predict or compromise the unique challenge response pairs (CRPs) reducing the security and reliability of the PUF. Mitigation strategies against such attacks typically include adding noise to the PUF output, using error-correcting codes, or enhanced cryptographic protocols that obscure physical side-channel attacks. In this research, we propose a Generative Adversarial Network (GAN) based security model, that monitors the PUF behavior and detects the variations in PUF response. The model can detect glitches in the PUF response and generate alerts to take mitigation measures. 
    more » « less
  2. Physical Unclonable Functions (PUFs) leverage manufacturing process imperfections that cause propagation delay discrepancies for the signals traveling along these paths. While PUFs can be used for device authentication and chip-specific key generation, strong PUFs have been shown to be vulnerable to machine learning modeling attacks. Although there is an impression that combinational circuits must be designed without any loops, cyclic combinational circuits have been shown to increase design security against hardware intellectual property theft. In this paper, we introduce feedback signals into traditional delay-based PUF designs such as arbiter PUF, ring oscillator PUF, and butterfly PUF to give them a wider range of possible output behaviors and thus an edge against modeling attacks. Based on our analysis, cyclic PUFs produce responses that can be binary, steady-state, oscillating, or pseudo-random under fixed challenges. The proposed cyclic PUFs are implemented in field programmable gate arrays, and their power and area overhead, in addition to functional metrics, are reported compared with their traditional counterparts. The security gain of the proposed cyclic PUFs is also shown against state-of-the-art attacks. 
    more » « less
  3. Internet of Things (IoT) have broad and deep penetration into our society, and many of them are resource-constrained, calling for lightweight security protocols. Physical unclonable functions (PUFs) leverage physical variations of circuits to produce responses unique for individual devices, and hence are not reproducible even by their manufacturers. Implementable with simplistic circuits and operable with low energy, PUFs are promising candidates as security primitives for resource-constrained IoT devices. Arbiter PUF (APUF) and its variants are lightweight in resource requirements but suffer from vulnerability to machine learning attacks. To defend APUF variants against machine learning attacks, in this paper we investigate a challenge input interface, which incurs low overhead. Analytical and experimental studies were carried out, showing substantial improvement of resistance against machine learning attacks when a PUF is equipped with the interface, rendering interfaced APUF variants promising candidates for security critical applications. 
    more » « less
  4. null (Ed.)
    Electronic money (e-money or e-Cash) is the digital representation of physical banknotes augmented by added use cases of online and remote payments. This paper presents a novel, anonymous e-money transaction protocol, built based on physical unclonable functions (PUFs), titled PUF-Cash. PUF-Cash preserves user anonymity while enabling both offline and online transaction capability. The PUF’s privacy-preserving property is leveraged to create blinded tokens for transaction anonymity while its hardware-based challenge–response pair authentication scheme provides a secure solution that is impervious to typical protocol attacks. The scheme is inspired from Chaum’s Digicash work in the 1980s and subsequent improvements. Unlike Chaum’s scheme, which relies on Rivest, Shamir and Adlemans’s (RSA’s) multiplicative homomorphic property to provide anonymity, the anonymity scheme proposed in this paper leverages the random and unique statistical properties of synthesized integrated circuits. PUF-Cash is implemented and demonstrated using a set of Xilinx Zynq Field Programmable Gate Arrays (FPGAs). Experimental results suggest that the hardware footprint of the solution is small, and the transaction rate is suitable for large-scale applications. An in-depth security analysis suggests that the solution possesses excellent statistical qualities in the generated authentication and encryption keys, and it is robust against a variety of attack vectors including model-building, impersonation, and side-channel variants. 
    more » « less
  5. Electronic money (e‐money or e‐Cash) is the digital representation of physical banknotes augmented by added use cases of online and remote payments. This paper presents a novel, anonymous e‐money transaction protocol, built based on physical unclonable functions (PUFs), titled PUF‐Cash. PUF‐Cash preserves user anonymity while enabling both offline and online transaction capability. The PUF’s privacy‐preserving property is leveraged to create blinded tokens for transaction anonymity while its hardware‐based challenge–response pair authentication scheme provides a secure solution that is impervious to typical protocol attacks. The scheme is inspired from Chaum’s Digicash work in the 1980s and subsequent improvements. Unlike Chaum’s scheme, which relies on Rivest, Shamir and Adlemans’s (RSA’s) multiplicative homomorphic property to provide anonymity, the anonymity scheme proposed in this paper leverages the random and unique statistical properties of synthesized integrated circuits. PUF‐Cash is implemented and demonstrated using a set of Xilinx Zynq Field Programmable Gate Arrays (FPGAs). Experimental results suggest that the hardware footprint of the solution is small, and the transaction rate is suitable for large‐scale applications. An in‐depth security analysis suggests that the solution possesses excellent statistical qualities in the generated authentication and encryption keys, and it is robust against a variety of attack vectors including model‐building, impersonation, and side‐ channel variants. 
    more » « less