skip to main content


Title: Self-efficacy, mindfulness, and self-compassion as predictors of math anxiety in undergraduate students
Many undergraduate students avoid mathematics classes due to math anxiety. This curtails options, particularly STEM majors where workers are needed and jobs are prevalent. This study aimed to investigate whether self-efficacy, mindfulness, and self-compassion predicted math anxiety. Participants of this study were undergraduate students (N = 345) from the Mathematics Department at a large Southeastern U.S. university. There was a significant difference in math anxiety scores between students pursuing STEM and non-STEM degrees. Non-STEM majors had higher scores on a measure of math anxiety. Hierarchical multiple regression results suggested that self-efficacy and self-compassion predicted math anxiety. There was a significant correlation, but not a predictive relationship, between mindfulness and math anxiety.  more » « less
Award ID(s):
1834569 1834575 1834586 1834595 1834601
NSF-PAR ID:
10327283
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Journal of Mathematical Education in Science and Technology
ISSN:
0020-739X
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this research-based paper, we explore the relationships among Rice University STEM students’ high school preparation, psychological characteristics, and career aspirations. Although greater high school preparation in STEM coursework predicts higher STEM retention and performance in college [1], objective academic preparation and college performance do not fully explain STEM retention decisions, and the students who leave STEM are often not the lowest performing students [2]. Certain psychosocial experiences may also influence students’ STEM decisions. We explored the predictive validity of 1) a STEM diagnostic exam as an objective measure of high school science and math preparation and 2) self-efficacy as a psychological measure on long-term (three years later) STEM career aspirations and STEM identity of underprepared Rice STEM students. University administrators use diagnostic exam scores (along with other evidence of high school underpreparation) to identify students who might benefit from additional support. Using linear regression to explore the link between diagnostic exam scores and self-efficacy, exam scores predicted self-efficacy a semester after students’ first semester in college; exam scores were also marginally correlated with self-efficacy three years later. Early STEM career aspirations predicted later career aspirations, accounting for 21.3% of the variance of career outcome expectations three years later (β=.462, p=.006). Scores on the math diagnostic exam accounted for an additional 10.1% of the variance in students’ three-year STEM career aspirations (p=.041). Self-efficacy after students’ first semester did not predict future STEM aspirations. Early STEM identity explained 28.8% of the variance in three-year STEM identity (p=.001). Math diagnostic exam scores accounted for only marginal incremental variance after STEM identity, and self-efficacy after students’ first semester did not predict three-year STEM aspirations. Overall, we found that the diagnostic exam provided incremental predictive validity in STEM career aspirations after students’ sixth semester of college, indicating that early STEM preparation has long-lasting ramifications for students’ STEM career intentions. Our next steps include examining whether students’ diagnostic exam scores predict STEM graduation rates and final GPAs for science and math versus engineering majors. 
    more » « less
  2. Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering. 
    more » « less
  3. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.1 mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.2 mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.3 report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  4. This work in progress is motivated by a self-study conducted at Texas State University. The study revealed that the average second year science, technology, engineering and math (STEM) student retention rate is 56% vs. 67% for all majors, and that 16% of STEM majors are female while 57% of all undergraduate students are female. Using these statistics, the authors identified the need to offer motivating experiences to freshman in STEM while creating a sense of community among other STEM students. This paper reports on the impact of two interventions designed by the authors and aligned with this need. The interventions are: (1) a one-day multi- disciplinary summer orientation (summer15) to give participants the opportunity to undertake projects that demonstrate the relevance of spatial and computational thinking skills and (2) a subsequent six-week spatial visualization skills training (fall 2015) for students in need to refine these skills. The interventions have spatial skills as a common topic and introduce participants to career applications through laboratory tours and talks. Swail et al.[1] mentions that the three elements to address in order to best support students’ persistence and achievement are cognitive, social, and institutional factors. The interventions address all elements to some extent and are part of an NSF IUSE grant (2015-2018) to improve STEM retention. The summer 2015 orientation was attended by 17 freshmen level students in Physics, Engineering, Engineering Technology, and Computer Science. The orientation was in addition to “Bobcat Preview”, a separate mandatory one-week length freshman orientation that includes academic advising and educational and spirit sessions to acclimate students to the campus. The effectiveness of the orientation was assessed through exit surveys administered to participants. Current results are encouraging; 100% of the participants answered that the orientation created a space to learn about science and engineering, facilitated them to make friends and encouraged peer interaction. Eighty percent indicated that the orientation helped them to build confidence in their majors. Exit survey findings were positively linked to a former exit survey from an orientation given to a group of 18 talented and low-income students in 2013. The training on refining spatial visualization skills connects to the summer orientation by its goals. It offers freshman students in need to refine spatial skills a further way to increase motivation to STEM and create community among other students. It is also an effective approach to support students’ persistence and achievement. Bairaktarova et al.[2] mention that spatial skills ability is gradually becoming a standard assessment of an individual’s likelihood to succeed as an engineer. Metz et al.[3] report that well-developed spatial skills have been shown to lead to success in Engineering and Technology, Computer Science, Chemistry, Computer Aided Design and Mathematics. The effectiveness of the fall 2015 training was assessed through comparison between pre and post tests results and exit surveys administered to participants. All participants improved their pre-training scores and average improvement in students’ scores was 18.334%. 
    more » « less
  5. Objective Historically, numerous studies have supported a male advantage in math. While more recent literature has shown that the gender gap is either decreasing or non-significant, a gender difference remains for higher level math (high school and college) (Hyde et. al. 1990; Casey et. al. 1995). It is known that both cognitive and non-cognitive factors influence math performance. There is little evidence for gender differences in working memory (Miller & Bichsel, 2004), which is a key predictor for mathematics. There is, however, evidence for gender differences in the non-cognitive domain, including math anxiety, with females having higher levels (Miller & Bichsel, 2004; Goetz, et. al. 2013). This study evaluates gender differences in both standardized and everyday math performances, and the way that cognitive and non-cognitive factors impact math. The study is focused on a very understudied group with high levels of math difficulty, namely community college students. We expected to find gender differences in math, and expect these to be in part accounted for by gender differences in strong mathematical predictors, particularly non-cognitive factors. Participants and Methods Participants included 94 community college students enrolled in their first math class (60 female; 34 male). Participants were administered the Kaufman Test of Educational Achievement – 3rd edition (KTEA3): Math Computation (MC) and Math Concepts Application (MCA) subtests, as well as an original Everyday Math (EM) measure which assessed their math ability in the context of common uses for math (e.g., financial and health numeracy). Additional measures included math anxiety, self-efficacy, and confidence. Finally, measures of complex span working memory tasks were administered to assess verbal and spatial working memory. Analyses were performed using correlation and regression to examine relationships between the cognitive and non-cognitive variables and standardized and everyday math measures. Results Correlations showed that all cognitive and non-cognitive variables are significantly correlated with all three math measures (all p < .05). There were no significant gender differences for any of the math measures, nor the working memory, or non-cognitive measures. Regression showed that across all three math outcomes, math anxiety and verbal working memory are significantly predictive of math performance. Overall R2 values were significant (range 27% to 37%, all p < .001). Working memory and math anxiety were unique predictors in all three regressions (all p < .05), but other non-cognitive variables such as self-efficacy did not show unique prediction (all p > .05). Conclusions There was no evidence for gender differences on any studied variable. This stands in contrast to prior studies, although few studies have included community college students. On the other hand, both cognitive and non-cognitive factors were complimentary in the prediction of math outcomes, which is consistent with prior work. Among non-cognitive predictors, math anxiety was particularly prominent. This study clarifies prior conflicting work regarding gender differences, and highlights the role of both math anxiety and working memory as relevant for multiple math outcomes. 
    more » « less