skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Existence of global weak solutions of $ p $-Navier-Stokes equations
This paper investigates the global existence of weak solutions for the incompressible \begin{document}$ p $$\end{document}-Navier-Stokes equations in \begin{document}$$ \mathbb{R}^d $$\end{document} \begin{document}$$ (2\leq d\leq p) $$\end{document}. The \begin{document}$$ p $$\end{document}-Navier-Stokes equations are obtained by adding viscosity term to the \begin{document}$$ p $$\end{document}-Euler equations. The diffusion added is represented by the \begin{document}$$ p $$\end{document}-Laplacian of velocity and the \begin{document}$$ p $$\end{document}-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-\begin{document}$$ p $$\end{document}$ distances with constraint density to be characteristic functions.  more » « less
Award ID(s):
2106988
PAR ID:
10447711
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Discrete & Continuous Dynamical Systems - B
Volume:
27
Issue:
1
ISSN:
1531-3492
Page Range / eLocation ID:
469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Any \begin{document}$ C^d $$\end{document} conservative map \begin{document}$$ f $$\end{document} of the \begin{document}$$ d $$\end{document}-dimensional unit ball \begin{document}$$ {\mathbb B}^d $$\end{document}, \begin{document}$$ d\geq 2 $$\end{document}, can be realized by renormalized iteration of a \begin{document}$$ C^d $$\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$$ {\mathbb B}^d $$\end{document}, arbitrarily close to identity in the \begin{document}$$ C^d $$\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$$ C^d $$\end{document} change of coordinates is exactly \begin{document}$$ f $$\end{document}$. 
    more » « less
  2. We establish an instantaneous smoothing property for decaying solutions on the half-line \begin{document}$$ (0, +\infty) $$\end{document} of certain degenerate Hilbert space-valued evolution equations arising in kinetic theory, including in particular the steady Boltzmann equation. Our results answer the two main open problems posed by Pogan and Zumbrun in their treatment of \begin{document}$ H^1 $$\end{document} stable manifolds of such equations, showing that \begin{document}$$ L^2_{loc} $$\end{document} solutions that remain sufficiently small in \begin{document}$$ L^\infty $$\end{document} (i) decay exponentially, and (ii) are \begin{document}$$ C^\infty $$\end{document} for \begin{document}$$ t>0 $$\end{document}, hence lie eventually in the \begin{document}$$ H^1 $$\end{document}$ stable manifold constructed by Pogan and Zumbrun. 
    more » « less
  3. This paper studies a family of generalized surface quasi-geostrophic (SQG) equations for an active scalar \begin{document}$$ \theta $$\end{document} on the whole plane whose velocities have been mildly regularized, for instance, logarithmically. The well-posedness of these regularized models in borderline Sobolev regularity have previously been studied by D. Chae and J. Wu when the velocity \begin{document}$ u $$\end{document} is of lower singularity, i.e., \begin{document}$$ u = -\nabla^{\perp} \Lambda^{ \beta-2}p( \Lambda) \theta $$\end{document}, where \begin{document}$$ p $$\end{document} is a logarithmic smoothing operator and \begin{document}$$ \beta \in [0, 1] $$\end{document}. We complete this study by considering the more singular regime \begin{document}$$ \beta\in(1, 2) $$\end{document}$. The main tool is the identification of a suitable linearized system that preserves the underlying commutator structure for the original equation. We observe that this structure is ultimately crucial for obtaining continuity of the flow map. In particular, straightforward applications of previous methods for active transport equations fail to capture the more nuanced commutator structure of the equation in this more singular regime. The proposed linearized system nontrivially modifies the flux of the original system in such a way that it coincides with the original flux when evaluated along solutions of the original system. The requisite estimates are developed for this modified linear system to ensure its well-posedness. 
    more » « less
  4. For any finite horizon Sinai billiard map \begin{document}$ T $$\end{document} on the two-torus, we find \begin{document}$$ t_*>1 $$\end{document} such that for each \begin{document}$$ t\in (0,t_*) $$\end{document} there exists a unique equilibrium state \begin{document}$$ \mu_t $$\end{document} for \begin{document}$$ - t\log J^uT $$\end{document}, and \begin{document}$$ \mu_t $$\end{document} is \begin{document}$$ T $$\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$$ - \log J^uT $$\end{document}.) We show that \begin{document}$$ \mu_t $$\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $$\end{document} is analytic on \begin{document}$$ (0,t_*) $$\end{document}. In addition, \begin{document}$$ P(t) $$\end{document} is strictly convex if and only if \begin{document}$$ \log J^uT $$\end{document} is not \begin{document}$$ \mu_t $$\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$$ t_a\ne t_b $$\end{document} with \begin{document}$$ \mu_{t_a} = \mu_{t_b} $$\end{document}, then \begin{document}$$ P(t) $$\end{document} is affine on \begin{document}$$ (0,t_*) $$\end{document}. An additional sparse recurrence condition gives \begin{document}$$ \lim_{t\downarrow 0} P(t) = P(0) $$\end{document}$. 
    more » « less
  5. Consider the linear transport equation in 1D under an external confining potential \begin{document}$$ \Phi $$\end{document}: \begin{document}$$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $$\end{document} For \begin{document}$$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $$\end{document} (with \begin{document}$$ \varepsilon >0 $$\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $$\end{document}, with an inverse polynomial decay rate \begin{document}$$ O({\langle} t{\rangle}^{-2}) $$\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $$\end{document}D under the external potential \begin{document}$$ \Phi $$\end{document}$. 
    more » « less