skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learn Task First or Learn Human Partner First: A Hierarchical Task Decomposition Method for Human-Robot Cooperation
Award ID(s):
1652454 2114464
PAR ID:
10327430
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Systems, Man, and Cybernetics
Page Range / eLocation ID:
590 to 595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large language models (LLMs) exhibit strong in-context learning (ICL) ability, which allows the model to make predictions on new examples based on the given prompt. Recently, a line of research (Von Oswald et al., 2023; Aky¨urek et al., 2023; Ahn et al., 2023; Mahankali et al., 2023; Zhang et al., 2024) considered ICL for a simple linear regression setting and showed that the forward pass of Transformers is simulating some variants of gradient descent (GD) algorithms on the in-context examples. In practice, the input prompt usually contains a task descriptor in addition to in-context examples. We investigate how the task description helps ICL in the linear regression setting. Consider a simple setting where the task descriptor describes the mean of input in linear regression. Our results show that gradient flow converges to a global minimum for a linear Transformer. At the global minimum, the Transformer learns to use the task descriptor effectively to improve its performance. Empirically, we verify our results by showing that the weights converge to the predicted global minimum and Transformers indeed perform better with task descriptors. 
    more » « less
  2. Human-robot teaming is becoming increasingly common within manufacturing processes. A key aspect practitioners need to decide on when developing effective processes is the level of task interdependence between human and robot team members. Task interdependence refers to the extent to which one’s behavior affects the performance of others in a team. In this work, we examine the effects of three levels of task interdependence—pooled, sequential, reciprocalin human-robot teaming on human worker’s mental states, task performance, and perceptions of the robot. Participants worked with the robot in an assembly task while their heart rate variability was being recorded. Results suggested human workers in the reciprocal interdependence level experienced less stress and perceived the robot more as a collaborator than other two levels. Task interdependence did not affect perceived safety. Our findings highlight the importance of considering task structure in human-robot teaming and inform future research on and industry practices for human-robot task allocation. 
    more » « less
  3. null (Ed.)