The detrimental effects of invasive lionfishes (Pterois volitans and Pterois miles) on western Atlantic shallow reefs are well documented, including declines in coral cover and native fish populations, with disproportionate predation on critically endangered reef fish in some locations. Yet despite individuals reaching depths[100 m, the role of mesophotic coral ecosystems (MCEs; reefs 30–150 m) in lionfish ecology has not been addressed. With lionfish control programs in most invaded locations limited to 30 mby diving restrictions, understanding the role of MCEs in lionfish distributions remains a critical knowledge gap potentially hindering conservation management. Here we synthesise unpublished and previously published studies of lionfish abundance and body length at paired shallow reef (0–30 m) and MCE sites in 63 locations in seven western Atlantic countries and eight sites in three Indo-Pacific countries where lionfish are native. Lionfish were found at similar abundances across the depth gradient from shallow to adjacent MCEs, with no difference between invaded and native sites. Of the five invaded countries where length data were available three had larger lionfish on mesophotic than shallow reefs, one showed no significant difference, while the fifth represented a recently invaded site. This suggests at least some mesophotic populations may represent extensions of natural ontogenetic migrations. Interestingly, despite their shallow focus, in many cases culling programs did not appear to alter abundance between depths. In general, we identify widespread invasive lionfish populations on MCE that could be responsible for maintaining high densities of lionfish recruits despite local shallow-biased control programs. This study highlights the need for management plans to incorporate lionfish populations below the depth limit of recreational diving in order to address all aspects of the local population and maximise the effectiveness of control efforts.
more »
« less
Broad-scale acoustic telemetry reveals long-distance movements and large home ranges for invasive lionfish on Atlantic coral reefs
Tracking studies for invasive lionfish ( Pterois volitans and P. miles ) in the Western Atlantic can provide key information on habitat use to inform population control, but to date have likely underestimated home range size and movement due to constrained spatial and temporal scales. We tracked 35 acoustically tagged lionfish for >1 yr (March 2018-May 2019) within a 35 km 2 acoustic array in Buck Island Reef National Monument, St. Croix, US Virgin Islands (an area 10× larger than previous studies). Tracking lionfish at this scale revealed that home range size is 3-20 times larger than previously estimated and varies more than 8-fold across individuals (~48000-379000 m 2 ; average: 101000 m 2 ), with estimates insensitive to assumptions about potential mortality for low-movement individuals. Lionfish move far greater distances than previously reported, with 37% of fish traveling >1 km from the initial tagging site toward deeper habitats, and 1 individual moving ~10 km during a 10 d period. Movement rates, home range size, and maximum distance traveled were not related to lionfish size (18-35 cm total length) or lunar phase. Lionfish movement was lowest at night and greatest during crepuscular periods, with fish acceleration (m s -2 ) increasing with water temperature during these times. Our results help reconcile observed patterns of rapid recolonization following lionfish removal, and suggest complex drivers likely result in highly variable patterns of movement for similarly sized fish occupying the same habitat. Culling areas ≥ the average lionfish home range size identified here (i.e. ~10 ha) or habitat patches isolated by ≥ ~180 m (radius of average home range) may minimize subsequent recolonization. If the shallow-deep long-distance movements observed here are unidirectional, mesophotic habitats may require culling at relatively greater frequencies to counteract ongoing migration.
more »
« less
- Award ID(s):
- 1946412
- PAR ID:
- 10327496
- Date Published:
- Journal Name:
- Marine Ecology Progress Series
- Volume:
- 673
- ISSN:
- 0171-8630
- Page Range / eLocation ID:
- 117 to 134
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundAtlantic tarpon (Megalops atlanticus) are a highly migratory species ranging along continental and insular coastlines of the Atlantic Ocean. Due to their importance to regional recreational and sport fisheries, research has been focused on large-scale movement patterns of reproductively active adults in areas where they are of high economic value. As a consequence, geographically restricted focus on adults has left significant gaps in our understanding of tarpon biology and their movements, especially for juveniles in remote locations where they are common. Our study focused on small-scale patterns of movement and habitat use of juvenile tarpon using acoustic telemetry in a small bay in St. Thomas, US Virgin Islands. ResultsFour juvenile tarpon (80–95 cm FL) were tracked from September 2015 to February 2018, while an additional eight juveniles (61–94 cm FL) left the study area within 2 days after tagging and were not included in analysis. Four tarpon had > 78% residency and average activity space of 0.76 km2(range 0.08–1.17 km2) within Brewers Bay (1.8 km2). Their vertical distribution was < 18 m depth with occasional movements to deeper water. Activity was greater during day compared to night, with peaks during crepuscular periods. During the day tarpon used different parts of the bay with consistent overlap around the St. Thomas airport runway and at night tarpon typically remained in a small shallow lagoon. However, when temperatures in the lagoon exceeded 30 °C, tarpon moved to cooler, deeper waters outside the lagoon. ConclusionOur results, although limited to only four individuals, provide new baseline data on the movement ecology of juvenile Atlantic tarpon. We showed that juvenile tarpon had high residency within a small bay and relatively stable non-overlapping daytime home ranges, except when seasonally abundant food sources were present. Fine-scale acoustic tracking showed the effects of environmental conditions (i.e., elevated seawater temperature) on tarpon movement and habitat use. These observations highlight the need for more extensive studies of juvenile tarpon across a broader range of their distribution, and compare the similarities and differences in behavior among various size classes of individuals from small juveniles to reproductively mature adults.more » « less
-
null (Ed.)Abstract Background The movement ecology of mutton snapper Lutjanus analis is poorly understood despite their ecological and economic importance in the Caribbean. Passive acoustic telemetry was used to determine home ranges of six adult L. analis , including diel patterns, in Brewers Bay, St. Thomas, US Virgin Islands. Understanding long-term space use, including site fidelity and habitat usage, is necessary to implement effective and appropriate management actions for a species with extensive space and resource needs. Results Individual L. analis were tracked over an average period of 316 days (range 125–509 days) and showed high site fidelity to relatively small home ranges (mean ± SD: 0.103 ± 0.028 km 2 , range 0.019–0.190 km 2 ) and core use areas with low overlap among individuals. Most home ranges had a habitat composition dominated by seagrass and to a lesser degree, coral reef and/or pavement. Nighttime activity spaces were distinct from but contained within daytime areas. Conclusions Mutton snapper showed strong site fidelity to home ranges in Brewers Bay. Two individuals that were absent from the array for more than a few hours were detected at separate arrays at spawning aggregation sites. This study expands upon knowledge of mutton snapper home range characteristics, highlights the importance of maintaining adjacent high-quality habitat types in any spatial management plan, and encourages the adoption of other types of management strategies, particularly for transient-aggregating species.more » « less
-
By dispersing seeds long distances, large, fruit-eating animals influence plant population spread and community dynamics. After fruit consumption, animal gut passage time and movement determine seed dispersal patterns and distances. These, in turn, are influenced by extrinsic, environmental variables and intrinsic, individual-level variables. We simulated seed dispersal by forest elephants ( Loxodonta cyclotis ) by integrating gut passage data from wild elephants with movement data from 96 individuals. On average, elephants dispersed seeds 5.3 km, with 89% of seeds dispersed farther than 1 km. The longest simulated seed dispersal distance was 101 km, with an average maximum dispersal distance of 40.1 km. Seed dispersal distances varied among national parks, perhaps due to unmeasured environmental differences such as habitat heterogeneity and configuration, but not with human disturbance or habitat openness. On average, male elephants dispersed seeds farther than females. Elephant behavioral traits strongly influenced dispersal distances, with bold, exploratory elephants dispersing seeds 1.1 km farther than shy, idler elephants. Protection of forest elephants, particularly males and highly mobile, exploratory individuals, is critical to maintaining long distance seed dispersal services that shape plant communities and tropical forest habitat.more » « less
-
Abstract Positive correlation between trout abundance and dissolved metal concentrations along the Upper Clark Fork River (UCFR; Montana, USA) have forced restoration practitioners to seek underlying causes of reduced fish density beyond heavy metal contamination. Throughout the river, nutrient enrichment and summer algal blooms may be hindering full recovery of trout populations. In this study, we evaluated the community structure and metal body burdens of benthic invertebrates and characterized existing trophic linkages between brown trout and dominant invertebrate taxa before and during summer algal blooms in a downstream reach of the UCFR where fish densities are low (20–30 trout/km), and where metal contamination is relevant but minimal compared with upstream. In spring, estimated invertebrate abundance was 1,727 ± 217 individuals/m2and dominated by Ephemerellidae and Baetidae families. During summer algal bloom, invertebrate abundance increased 15‐fold (20,580 ± 3,510 individuals/m2) mostly due to greater abundance of Chironomidae, Hydropsychidae, and Simulidae. Copper body burdens (130 ± 42 ppm) were higher than any other heavy metal regardless of season, but detectable concentrations of arsenic, cadmium, and lead were also found. A Bayesian mixing model combining metal burdens and stable isotopes showed that in the spring, trout of average size (355 ± 65 g) relied mostly on epibenthic taxa (Ephemerellidae and Hydropsychidae), contrasting with small (<100 g) and large (>400 g) trout relying heavily on Baetidae, a major component of invertebrate drift. Foraging segregation related to trout size did not occur during summer algal blooms, which may reflect increasing influence of benthic algal proliferation or indicate the indiscriminate use of pool habitats as thermal refugia over summer conditions by trout of different ages.more » « less
An official website of the United States government

