skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fishes in the Lower Congo River: An extreme case of species divergence and convergent evolution.
In its lower reaches the Congo River is the world’s fastest and deepest river, and this short stretch hosts great biological diversity. Many fishes inhabiting the lower Congo River display adaptations to life in such an extreme environment, and often similar adaptations have arisen in fishes distant from each other on the tree of life. Professor Melanie Stiassny, along withher partners at the American Museum of Natural History, CUNY Graduate Center and York College, the University of Kinshasa, and the University of Marien Ngouabi, have been studying the fish of this region for over ten years, and their work has produced many interesting findings.  more » « less
Award ID(s):
1655227
PAR ID:
10327580
Author(s) / Creator(s):
Date Published:
Journal Name:
Research outreach
Volume:
108
ISSN:
2517-7028
Page Range / eLocation ID:
94-98
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. R.M. Tshimanga; G.D. Moukandi N’kaya; D. Alsdorf (Ed.)
    Many river systems of the world are super-saturated in dissolved CO2 (pCO2) relative to equilibrium with the atmosphere. Here we compare the coupled organic matter and pCO2 dynamics of the world’s two largest and most organic-rich river systems. The emerging data sets for the Congo River, joint with Amazon River data, enable us to begin to think more generally about the overall functioning of the world’s two largest river basins. Discharge is the primary control on POC and DOC export in both the Amazon and Congo Rivers. TSS yield from the Amazon is twentyfold greater per unit area than the Congo. However, despite low TSS concentrations, the Congo has a POC content approximately five times higher than the Amazon. The organic-rich character of both watersheds is reflected in the DOC export, with the Amazon exporting ~11% and the Congo ~5% of the global land to ocean flux (but care should be taken when describing estimates of TSS and carbon to the ocean since processing and sequestration in tidal and coastal areas can significantly alter TSS and carbon delivery, and last measuring stations are typically hundreds of kilometers from the sea). pCO2 in the Amazon mainstem range from 1,000 to 10,000 ppm, with floodplain lakes ranging from 20 to 20,000 ppm. Concentrations in the Congo are lower, with high values of 5,000 ppm. The elevated level of pCO2 even as far as the mouth of such major rivers as the Amazon and Congo, up to thousands of kilometers from CO2-rich small streams, poses a most interesting question: What set of processes maintains such high levels? The answer is presumably some combination of instream metabolism of organic matter of terrestrial and floodplain origin, and/or injection of very high pCO2 water from local floodplains or tributaries." 
    more » « less
  2. Freshwater fishes are notably diverse, given that freshwater habitat represents a tiny fraction of the earth's surface, but the mechanisms generating this diversity remain poorly understood. Rivers provide excellent models to understand how freshwater diversity is generated and maintained across heterogeneous habitats. In particular, the lower Congo River (LCR) consists of a dynamic hydroscape exhibiting extraordinary aquatic biodiversity, endemicity, morphological and ecological specialization. Previous studies have suggested that the numerous high-energy rapids throughout the LCR form physical barriers to gene flow, thus facilitating diversification and speciation, generating ichthyofaunal diversity. However, this hypothesis has not been fully explored using genome-wide SNPs for fish species distributed across the LCR. Here, we examined four lamprologine cichlids endemic to the LCR that are distributed along the river without range overlap. Using genome-wide SNP data, we tested the hypotheses that high-energy rapids serve as physical barriers to gene flow that generate genetic divergence at interspecific and intraspecific levels, and that gene flow occurs primarily in a downstream direction. Our results are consistent with the prediction that powerful rapids sometimes act as a barrier to gene flow but also suggest that, at certain temporal and spatial scales, they may provide multidirectional dispersal opportunities for riverine rheophilic cichlid fishes. These results highlight the complexity of diversification processes in rivers and the importance of assessing such processes across different riverscapes. 
    more » « less
  3. Abstract Large spatio‐temporal gradients in the Congo basin vegetation and rainfall are observed. However, its water‐balance (evapotranspiration minus precipitation, orET − P) is typically measured at basin‐scales, limited primarily by river‐discharge data, spatial resolution of terrestrial water storage measurements, and poorly constrainedET. We use observations of the isotopic composition of water vapor to quantify the spatio‐temporal variability of net surface water fluxes across the Congo Basin between 2003 and 2018. These data are calibrated at basin scale using satellite gravity and total Congo river discharge measurements and then used to estimate time‐varyingET − Pover four quadrants representing the Congo Basin, providing first estimates of this kind for the region. We find that the multi‐year record, seasonality, and interannual variability ofET − Pfrom both the isotopes and the gravity/river discharge based estimates are consistent. Additionally, we use precipitation and gravity‐based estimates with our water vapor isotope‐basedET − Pto calculate time and space averagedETand net river discharge within the Congo Basin. These quadrant‐scale moisture flux estimates indicate (a) substantial recycling of moisture in the Congo Basin (temporally and spatially averagedET/P > 70%), consistent with models and visible light‐basedETestimates, and (b) net river outflow is largest in the Western Congo where there are more rivers and higher flow rates. Our results confirm the importance ofETin modulating the Congo water cycle relative to other water sources. 
    more » « less
  4. Migratory animals respond to environmental heterogeneity by predictably moving long distances in their lifetime. Migration has evolved repeatedly in animals, and many adaptations are found across the tree of life that increase migration efficiency. Life-history theory predicts that migratory species should evolve a larger body size than non-migratory species, and some empirical studies have shown this pattern. A recent study analysed the evolution of body size between diadromous and non-diadromous shads, herrings, anchovies and allies, finding that species evolved larger body sizes when adapting to a diadromous lifestyle. It remains unknown whether different fish clades adapt to migration similarly. We used an adaptive landscape framework to explore body size evolution for over 4500 migratory and non-migratory species of ray-finned fishes. By fitting models of macroevolution, we show that migratory species are evolving towards a body size that is larger than non-migratory species. Furthermore, we find that migratory lineages evolve towards their optimal body size more rapidly than non-migratory lineages, indicating body size is a key adaption for migratory fishes. Our results show, for the first time, that the largest vertebrate radiation on the planet exhibited strong evolutionary determinism when adapting to a migratory lifestyle. 
    more » « less
  5. Barluenga, Marta (Ed.)
    Abstract Trait loss represents an intriguing evolutionary problem, particularly when it occurs across independent lineages. Fishes in light-poor environments often evolve “troglomorphic” traits, including reduction or loss of both pigment and eyes. Here, we investigate the genomic basis of trait loss in a blind and depigmented African cichlid, Lamprologus lethops, and explore evolutionary forces (selection and drift) that may have contributed to these losses. This species, the only known blind cichlid, is endemic to the lower Congo River. Available evidence suggests that it inhabits deep, low-light habitats. Using genome sequencing, we show that genes related to eye formation and pigmentation, as well as other traits associated with troglomorphism, accumulated inactivating mutations rapidly after speciation. A number of the genes affected in L. lethops are also implicated in troglomorphic phenotypes in Mexican cavefish (Astyanax mexicanus) and other species. Analysis of heterozygosity patterns across the genome indicates that L. lethops underwent a significant population bottleneck roughly 1 Ma, after which effective population sizes remained low. Branch-length tests on a subset of genes with inactivating mutations show little evidence of directional selection; however, low overall heterozygosity may reduce statistical power to detect such signals. Overall, genome-wide patterns suggest that accelerated genetic drift from a severe bottleneck, perhaps aided by directional selection for the loss of physiologically expensive traits, caused inactivating mutations to fix rapidly in this species. 
    more » « less