Abstract Management of the brown marmorated stink bug,Halyomorpha halys(Hemiptera: Pentatomidae), an invasive, agricultural pest in the United States, has presented significant challenges. This polyphagous insect uses both extra‐oral and gut‐based digestion thwarting protein‐ or nucleotide‐based control strategies. The objective of this study was to biochemically characterize the digestive enzymes (proteases and nucleases) from the saliva, salivary gland and the gut ofH. halys. Enzyme profiles for the two tissues and saliva radically differ: The pH optimum for proteases in the gut was six, with cysteine proteases predominant. In contrast, the alkaline pH optima for protease activity in the salivary gland (8–10) and saliva (7) reflected abundant serine protease and cathepsin activities. RNase enzymes were most abundant in saliva, while dsRNase and DNase activities were higher in the salivary gland and saliva compared to those in the gut. These very different enzyme profiles highlight the biphasic digestive system used by this invasive species for efficient processing of plant nutrients. Knowledge ofH. halysdigestive physiology will allow for counteractive measures targeting digestive enzymes or for appropriate protection of protein‐ or nucleotide‐based management options targeting this pest.
more »
« less
Active Learning Module for Protein Structure Analysis Using Novel Enzymes
ABSTRACT A major challenge for science educators is teaching foundational concepts while introducing their students to current research. Here we describe an active learning module developed to teach protein structure fundamentals while supporting ongoing research in enzyme discovery. It can be readily implemented in both entry-level and upper-division college biochemistry or biophysics courses. Preactivity lectures introduced fundamentals of protein secondary structure and provided context for the research projects, and a homework assignment familiarized students with 3-dimensional visualization of biomolecules with UCSF Chimera, a free protein structure viewer. The activity is an online survey in which students compare structure elements in papain, a well-characterized cysteine protease from Carica papaya, to novel homologous proteases identified from the genomes of an extremophilic microbe (Halanaerobium praevalens) and 2 carnivorous plants (Drosera capensis and Cephalotus follicularis). Students were then able to identify, with varying levels of accuracy, a number of structural features in cysteine proteases that could expedite the identification of novel or biochemically interesting cysteine proteases for experimental validation in a university laboratory. Student responses to a postactivity survey were largely positive and constructive, describing points in the activity that could be improved and indicating that the activity was an engaging way to learn about protein structure.
more »
« less
- Award ID(s):
- 2003837
- PAR ID:
- 10327584
- Date Published:
- Journal Name:
- The Biophysicist
- ISSN:
- 2578-6970
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The intercalated disk is a cardiac specific structure composed of three main protein complexes—adherens junctions, desmosomes, and gap junctions—that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.more » « less
-
This research work in progress research paper examines student perceptions after completing an exploratory learning lesson before instruction on an introductory programming concept. During exploratory learning activities, students explore a novel concept prior to instruction—the reverse of typical instruct-then-practice methods. Exploratory learning before instruction can help students activate prior knowledge, become aware of their knowledge gaps, and discern important problem features to improve conceptual understanding. Students in a first-year engineering course (N=402) learned about Python error messages in one of two conditions. In the explore-first condition, students completed a collaborative activity prior to instruction. In the instruct-first condition, students received instruction prior to the activity. Following the activity and instruction, students completed a survey to assess their perceptions of the activities. Survey items (e.g. cognitive load, self-efficacy, belonging, knowledge gaps) were chosen as potential factors that could explain learning outcomes between the two conditions. In prior work, we found higher posttest scores in the instruct-first compared to explore-first condition, contrary to the majority of previous studies. Cognitive load and knowledge gaps were higher in the explore-first condition than the instruct-first condition. Self-efficacy and competence were lower in the explore-first condition. No other significant differences were found. Exploring before instruction might disrupt learning and perceived efficacy and competence if the activity is too challenging, or if the instruction does not fully resolve gaps in students’ knowledge.more » « less
-
This Full Paper in the Research to Practice Category reports on an empirical empirical study in which novel educational tools and techniques were employed to teach fundamentals of problem decomposition - a cognitive task transcending disciplines. Within the discipline of computer science, problem decomposition is recognized as a foundational activity of software development. Factors that contribute to the complexity of this activity include: (1) recognizing patterns within an algorithm, (2) mapping the understanding of an algorithm to the syntax of a given programming language, and (3) complexity intrinsic to the problem domain itself. Cognitive load theory states that learning outcomes can be positively affected by reducing the extraneous cognitive load associated with learning objectives as well as by changing the nature of what is learned. In the study reported upon here, a novel instructional method was developed to decrease students' cognitive load. Novel instructional content supported by a custom visualization tool was used in a classroom setting in order to help novice programmers develop an understanding of function-based problem decomposition within the context of a visual domain. Performance on outcome measures (a quiz and assignment) were compared between the new method and the traditional teaching method demonstrated that students were significantly more successful at demonstrating mastery when using the new instructional method.more » « less
-
Abstract Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser‐known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm‐leucylaminopeptidases (S‐LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S‐LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male‐derived materials to females.more » « less
An official website of the United States government

