skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring colloid–surface interaction forces in parallel using fluorescence centrifuge force microscopy
Interactions between colloidal-scale structures govern the physical properties of soft and biological materials, and knowledge of the forces associated with these interactions is critical for understanding and controlling these materials. A common approach to quantify colloidal interactions is to measure the interaction forces between colloids and a fixed surface. The centrifuge force microscope (CFM), a miniaturized microscope inside a centrifuge, is capable of performing hundreds of force measurements in parallel over a wide force range (10 −2 to 10 4 pN), but CFM instruments are not widely used to measure colloid–surface interaction forces. In addition, current CFM instruments rely on brightfield illumination and are not capable of fluorescence microscopy. Here we present a fluorescence CFM (F-CFM) that combines both fluorescence and brightfield microscopy and demonstrate its use for measuring microscale colloidal-surface interaction forces. The F-CFM operates at speeds up to 5000 RPM, 2.5× faster than those previously reported, yielding a 6.25× greater maximum force than previous instruments. A battery-powered GoPro video camera enables real-time viewing of the microscopy video on a mobile device, and frequency analysis of the audio signal correlates centrifuge rotational speed with the video signal. To demonstrate the capability of the F-CFM, we measure the force required to detach hundreds of electrostatically stabilized colloidal microspheres attached to a charged glass surface as a function of ionic strength and compare the resulting force distributions with an approximated DLVO theory. The F-CFM will enable microscale force measurements to be correlated with fluorescence imaging in soft and biological systems.  more » « less
Award ID(s):
1753352 2328766
PAR ID:
10327659
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
26
ISSN:
1744-683X
Page Range / eLocation ID:
6326 to 6336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atomic force microscopy (AFM) is a part of the scanning probe microscopy family. It provides a platform for high-resolution topographical imaging, surface analysis as well as nanomechanical property mapping for stiff and soft samples (live cells, proteins, and other biomolecules). AFM is also crucial for measuring single-molecule interaction forces and important parameters of binding dynamics for receptor-ligand interactions or protein-protein interactions on live cells. However, performing AFM measurements and the associated data analytics are tedious, laborious experimental procedures requiring specific skill sets and continuous user supervision. Significant progress has been made recently in artificial intelligence (AI) and deep learning (DL), extending into microscopy. In this review, we summarize how researchers have implemented machine learning approaches so far to improve the performance of atomic force microscopy (AFM), make AFM data analytics faster, and make data measurement procedures high-throughput. We also shed some light on the different application areas of AFM that have significantly benefited from applications of machine learning frameworks and discuss the scope and future possibilities of these crucial approaches. 
    more » « less
  2. null (Ed.)
    This study is aimed to evaluate the effects of coated surgical needles with composite polymers such as polydopamine (PDA), polytetrafluoroethylene (PTFE), and carbon. The coated needle’s lubrication properties were measured using 3 DOF force sensors and 3D robot system by the repetitive insertion in soft tissue materials. Needle durability is a measure of needle sharpness after repeated passage through high stiffness tissue materials. The composite coatings were shown to reduce the insertion force by ∼49% and retraction forces by ∼46% when tested using a bovine kidney. The surface roughness and the lateral friction force of the needle are measured using the Atomic Force Microscope (AFM). The adhesion energy of the different coating on the needle will be measured using a nano-scratch method. 
    more » « less
  3. null (Ed.)
    Mammalian cells have evolved complex mechanical connections to their microenvironment, including focal adhesion clusters that physically connect the cytoskeleton and the extracellular matrix. This mechanical link is also part of the cellular machinery to transduce, sense and respond to external forces. Although methods to measure cell attachment and cellular traction forces are well established, these are not capable of quantifying force transmission through the cell body to adhesion sites. We here present a novel approach to quantify intracellular force transmission by combining microneedle shearing at the apical cell surface with traction force microscopy at the basal cell surface. The change of traction forces exerted by fibroblasts to underlying polyacrylamide substrates as a response to a known shear force exerted with a calibrated microneedle reveals that cells redistribute forces dynamically under external shearing and during sequential rupture of their adhesion sites. Our quantitative results demonstrate a transition from dipolar to monopolar traction patterns, an inhomogeneous distribution of the external shear force to the adhesion sites as well as dynamical changes in force loading prior to and after the rupture of single adhesion sites. Our strategy of combining traction force microscopy with external force application opens new perspectives for future studies of force transmission and mechanotransduction in cells. 
    more » « less
  4. LED array microscopy is an emerging platform for computational imaging with significant utility for biological imaging. Existing LED array systems often exploit transmission imaging geometries of standard brightfield microscopes that leave the rich backscattered field undetected. This backscattered signal contains high-resolution sample information with superb sensitivity to subtle structural features that make it ideal for biological sensing and detection. Here, we develop an LED array reflectance microscope capturing the sample’s backscattered signal. In particular, we demonstrate multimodal brightfield, darkfield, and differential phase contrast imaging on fixed and living biological specimens includingCaenorhabditis elegans (C. elegans), zebrafish embryos, and live cell cultures. Video-rate multimodal imaging at 20 Hz records real time features of freely movingC. elegansand the fast beating heart of zebrafish embryos. Our new reflectance mode is a valuable addition to the LED array microscopic toolbox. 
    more » « less
  5. When a colloidal suspension is dried, capillary pressure may overwhelm repulsive electrostatic forces, assembling aggregates that are out of thermal equilibrium. This poorly understood process confers cohesive strength to many geological and industrial materials. Here we observe evaporation-driven aggregation of natural and synthesized particulates, probe their stability under rewetting, and measure bonding strength using an atomic force microscope. Cohesion arises at a common length scale (∼5 μm), where interparticle attractive forces exceed particle weight. In polydisperse mixtures, smaller particles condense within shrinking capillary bridges to build stabilizing “solid bridges” among larger grains. This dynamic repeats across scales, forming remarkably strong, hierarchical clusters, whose cohesion derives from grain size rather than mineralogy. These results may help toward understanding the strength and erodibility of natural soils, and other polydisperse particulates that experience transient hydrodynamic forces. 
    more » « less