skip to main content


Title: An experimental approach for crown to whole-canopy defoliation in forests
Canopy defoliation is an important source of disturbance in forest ecosystems that has rarely been represented in large-scale manipulation experiments. Scalable crown to canopy level experimental defoliation is needed to disentangle the effects of variable intensity, timing, and frequency on forest structure, function, and mortality. We present a novel pressure-washing-based defoliation method that can be implemented at the canopy-scale, throughout the canopy volume, targeted to individual leaves or trees, and completed within a timeframe of hours or days. Pressure washing proved successful at producing consistent leaf-level and whole-canopy defoliation, with 10%–20% reduction in leaf area index and consistent leaf surface area removal across branches and species. This method allows for stand-scale experimentation on defoliation disturbance in forested ecosystems and has the potential for broad application. Studies utilizing this standardized method could promote mechanistic understanding of defoliation effects on ecosystem structure and function and development of synthetic understanding across forest types, ecoregions, and defoliation sources.  more » « less
Award ID(s):
1655095 1926538
NSF-PAR ID:
10327795
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Forest Research
Volume:
52
Issue:
2
ISSN:
0045-5067
Page Range / eLocation ID:
286 to 292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical ecosystems are undergoing unprecedented rates of degradation from deforestation, fire, and drought disturbances. The collective effects of these disturbances threaten to shift large portions of tropical ecosystems such as Amazon forests into savanna‐like structure via tree loss, functional changes, and the emergence of fire (savannization). Changes from forest states to a more open savanna‐like structure can affect local microclimates, surface energy fluxes, and biosphere–atmosphere interactions. A predominant type of ecosystem state change is the loss of tree cover and structural complexity in disturbed forest. Although important advances have been made contrasting energy fluxes between historically distinct old‐growth forest and savanna systems, the emergence of secondary forests and savanna‐like ecosystems necessitates a reframing to consider gradients of tree structure that span forest to savanna‐like states at multiple scales. In this Innovative Viewpoint, we draw from the literature on forest–grassland continua to develop a framework to assess the consequences of tropical forest degradation on surface energy fluxes and canopy structure. We illustrate this framework for forest sites with contrasting canopy structure that ranges from simple, open, and savanna‐like to complex and closed, representative of tropical wet forest, within two climatically distinct regions in the Amazon. Using a recently developed rapid field assessment approach, we quantify differences in cover, leaf area vertical profiles, surface roughness, albedo, and energy balance partitioning between adjacent sites and compare canopy structure with adjacent old‐growth forest; more structurally simple forests displayed lower net radiation. To address forest–atmosphere feedback, we also consider the effects of canopy structure change on susceptibility to additional future disturbance. We illustrate a converse transition—recovery in structure following disturbance—measuring forest canopy structure 10 yr after the imposition of a 5‐yr drought in the ground‐breaking Seca Floresta experiment. Our approach strategically enables rapid characterization of surface properties relevant to vegetation models following degradation, and advances links between surface properties and canopy structure variables, increasingly available from remote sensing. Concluding, we hypothesize that understanding surface energy balance and microclimate change across degraded tropical forest states not only reveals critical atmospheric forcing, but also critical local‐scale feedbacks from forest sensitivity to additional climate‐linked disturbance.

     
    more » « less
  2. Across the globe, the forest carbon sink is increasingly vulnerable to an expanding array of low- to moderate-severity disturbances. However, some forest ecosystems exhibit functional resistance (i.e., the capacity of ecosystems to continue functioning as usual) following disturbances such as extreme weather events and insect or fungal pathogen outbreaks. Unlike severe disturbances (e.g., stand-replacing wildfires), moderate severity disturbances do not always result in near-term declines in forest production because of the potential for compensatory growth, including enhanced subcanopy production. Community-wide shifts in subcanopy plant functional traits, prompted by disturbance-driven environmental change, may play a key mechanistic role in resisting declines in net primary production (NPP) up to thresholds of canopy loss. However, the temporal dynamics of these shifts, as well as the upper limits of disturbance for which subcanopy production can compensate, remain poorly characterized. In this study, we leverage a 4-year dataset from an experimental forest disturbance in northern Michigan to assess subcanopy community trait shifts as well as their utility in predicting ecosystem NPP resistance across a wide range of implemented disturbance severities. Through mechanical girdling of stems, we achieved a gradient of severity from 0% (i.e., control) to 45, 65, and 85% targeted gross canopy defoliation, replicated across four landscape ecosystems broadly representative of the Upper Great Lakes ecoregion. We found that three of four examined subcanopy community weighted mean (CWM) traits including leaf photosynthetic rate ( p = 0.04), stomatal conductance ( p = 0.07), and the red edge normalized difference vegetation index ( p < 0.0001) shifted rapidly following disturbance but before widespread changes in subcanopy light environment triggered by canopy tree mortality. Surprisingly, stimulated subcanopy production fully compensated for upper canopy losses across our gradient of experimental severities, achieving complete resistance (i.e., no significant interannual differences from control) of whole ecosystem NPP even in the 85% disturbance treatment. Additionally, we identified a probable mechanistic switch from nutrient-driven to light-driven trait shifts as disturbance progressed. Our findings suggest that remotely sensed traits such as the red edge normalized difference vegetation index (reNDVI) could be particularly sensitive and robust predictors of production response to disturbance, even across compositionally diverse forests. The potential of leaf spectral indices to predict post-disturbance functional resistance is promising given the capabilities of airborne to satellite remote sensing. We conclude that dynamic functional trait shifts following disturbance can be used to predict production response across a wide range of disturbance severities. 
    more » « less
  3. Abstract

    Leaf‐cutter ants are a prominent feature in Neotropical ecosystems, but a comprehensive assessment of their effects on ecosystem functions is lacking. We reviewed the literature and used our own recent findings to identify knowledge gaps and develop a framework to quantify the effects of leaf‐cutter ants on ecosystem processes.

    Leaf‐cutter ants disturb the soil structure during nest excavation changing soil aeration and temperature. They mix relatively nutrient‐poor soil from deeper layers with the upper organic‐rich layers increasing the heterogeneity of carbon and nutrients within nest soils.

    Leaf‐cutter ants account for about 25% of all herbivory in Neotropical forest ecosystems, moving 10%–15% of leaves in their foraging range to their nests. Fungal symbionts transform the fresh, nutrient‐rich vegetative material to produce hyphal nodules to feed the ants. Organic material from roots and arbuscular mycorrhizal fungi enhances carbon and nutrient turnover in nest soils and creates biogeochemical hot spots. Breakdown of organic matter, microbial and ant respiration, and nest waste material decomposition result in increased CO2, CH4,and N2O production, but the build‐up of gases and heat within the nest is mitigated by the tunnel network ventilation system. Nest ventilation dynamics are challenging to measure without bias, and improved sensor systems would likely solve this problem.

    Canopy gaps above leaf‐cutter ant nests change the light, wind and temperature regimes, which affects ecosystem processes. Nests differ in density and size depending on colony age, forest type and disturbance level and change over time resulting in spatial and temporal changes of ecosystem processes. These characteristics remain a challenge to evaluate rapidly and non‐destructively.

    Addressing the knowledge gaps identified in this synthesis will bring insights into physical and biological processes driving biogeochemical cycles at the nest and ecosystem scale and will improve our understanding of ecosystem biogeochemical heterogeneity and larger scale ecological phenomena.

    Aplain language summaryis available for this article.

     
    more » « less
  4. Abstract

    Plant functional diversity is strongly connected to photosynthetic carbon assimilation in terrestrial ecosystems. However, many of the plant functional traits that regulate photosynthetic capacity, including foliar nitrogen concentration and leaf mass per area, vary significantly between and within plant functional types and vertically through forest canopies, resulting in considerable landscape‐scale heterogeneity in three dimensions. Hyperspectral imagery has been used extensively to quantify functional traits across a range of ecosystems but is generally limited to providing information for top of canopy leaves only. On the other hand, lidar data can be used to retrieve the vertical structure of forest canopies. Because these data are rarely collected at the same time, there are unanswered questions about the effect of forest structure on the three ‐dimensional spatial patterns of functional traits across ecosystems. In the United States, the National Ecological Observatory Network's Airborne Observation Platform (NEON AOP) provides an opportunity to address this structure‐function relationship by collecting lidar and hyperspectral data together across a variety of ecoregions. With a fusion of hyperspectral and lidar data from the NEON AOP and field‐collected foliar trait data, we assessed the impacts of forest structure on spatial patterns of N. In addition, we examine the influence of abiotic gradients and management regimes on top‐of‐canopy percent N and total canopy N (i.e., the total amount of N [g/m2] within a forest canopy) at a NEON site consisting of a mosaic of open longleaf pine and dense broadleaf deciduous forests. Our resulting maps suggest that, in contrast to top of canopy values, total canopy N variation is dampened across this landscape resulting in relatively homogeneous spatial patterns. At the same time, we found that leaf functional diversity and canopy structural diversity showed distinct dendritic patterns related to the spatial distribution of plant functional types.

     
    more » « less
  5. Atkins, Jeff (Ed.)
    Abstract Understanding connections between ecosystem nitrogen (N) cycling and invasive insect defoliation could facilitate the prediction of disturbance impacts across a range of spatial scales. In this study we investigated relationships between ecosystem N cycling and tree defoliation during a recent 2015–18 irruption of invasive gypsy moth caterpillars (Lymantria dispar), which can cause tree stress and sometimes mortality following multiple years of defoliation. Nitrogen is a critical nutrient that limits the growth of caterpillars and plants in temperate forests. In this study, we assessed the associations among N concentrations, soil solution N availability and defoliation intensity by L. dispar at the scale of individual trees and forest plots. We measured leaf and soil N concentrations and soil solution inorganic N availability among individual red oak trees (Quercus rubra) in Amherst, MA and across a network of forest plots in Central Massachusetts. We combined these field data with estimated defoliation severity derived from Landsat imagery to assess relationships between plot-scale defoliation and ecosystem N cycling. We found that trees in soil with lower N concentrations experienced more herbivory than trees in soil with higher N concentrations. Additionally, forest plots with lower N soil were correlated with more severe L. dispar defoliation, which matched the tree-level relationship. The amount of inorganic N in soil solution was strongly positively correlated with defoliation intensity and the number of sequential years of defoliation. These results suggested that higher ecosystem N pools might promote the resistance of oak trees to L. dispar defoliation and that defoliation severity across multiple years is associated with a linear increase in soil solution inorganic N. 
    more » « less