An enhanced Cu-based friction material was prepared by the powder metallurgy techniques and proposed for use in the dry clutch system. The friction characteristics and wear rate of this friction material sliding against 65Mn steel are obtained using Universal Material Tester-5. The friction pairs were subjected to two operating variables, which are sliding speed and temperature. The effect of these variables during the engagement process of the friction pairs is investigated. Knowing the normal applied force and dimension of the clutch disc, the dynamic friction coefficient was translated to friction torque capacity with time. It was found that instability can be excited at low operational conditions when the resulting friction coefficient is high. At 25 ℃, the dynamic friction torque oscillates with time likewise at 400 ℃. Generally, a more stable friction torque is obtained when the sliding speed is varied compared to varying the temperatures. Moreover, the influence of the operating temperatures and sliding speeds on thermal buckling and thermoelastic instability of the friction disc is the second consideration in this work. The onset of thermoelastic instability occurs when the sliding speed exceeded 200 r/min and the results for the growth rate of hot spots were found to agree well with the critical speed of the system. Also, thermal buckling was highly dependent on the temperature difference between the inner and outer radius of the friction disc. 
                        more » 
                        « less   
                    
                            
                            Effect of Wear on Thermoelastic Instability Involving Friction Pair Thickness in Automotive Clutches
                        
                    
    
            Abstract Wear is an inevitable phenomenon in the working process of clutch and brake system. With the increase of transmission speed and power density, the thermoelastic instability (TEI) of clutch and brake system is becoming more serious over time. It is difficult to obtain the practical solution for conventional materials of clutches and brakes and their actual geometry with finite thickness using the existing analytical method. To study the comprehensive effects of wear and friction pair thickness on TEI, Archard Wear Law is combined with the Fourier Reduction Method to develop a finite element model, the accuracy of which is validated using the existing analytical method. Within the usual ranges of thickness and wear coefficient of friction pair, the increase of friction material thickness or the decrease of steel material thickness will suppress the TEI. Nonetheless, if the wear-rate is increased significantly, the effect of friction material thickness will be reversed. The worst thickness, which must be avoided in the design, and the local optimum thickness exist for the steel material. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1928876
- PAR ID:
- 10327835
- Date Published:
- Journal Name:
- Journal of Tribology
- Volume:
- 144
- Issue:
- 4
- ISSN:
- 0742-4787
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In applications involving fretting wear damage, surfaces with high yield strength and wear resistance are required. In this study, the mechanical responses of materials with graded nanostructured surfaces during fretting sliding are investigated and compared to homogeneous materials through a systematic computational study. A three-dimensional finite element model is developed to characterize the fretting sliding characteristics and shakedown behavior with varying degrees of contact friction and gradient layer thicknesses. Results obtained using a representative model material (i.e., 304 stainless steel) demonstrate that metallic materials with a graded nanostructured surface could exhibit a more than 80% reduction in plastically deformed surface areas and volumes, resulting in superior fretting damage resistance in comparison to homogeneous coarse-grained metals. In particular, a graded nanostructured material can exhibit elastic or plastic shakedown, depending on the contact friction coefficient. Optimal fretting resistance can be achieved for the graded nanostructured material by decreasing the friction coefficient (e.g., from 0.6 to 0.4 in 304 stainless steel), resulting in an elastic shakedown behavior, where the plastically deformed volume and area exhibit zero increment in the accumulated plastic strain during further sliding. These findings in the graded nanostructured materials using 304 stainless steel as a model system can be further tailored for engineering optimal fretting damage resistance.more » « less
- 
            SAE; Transactions (Ed.)Alternative fuels are sought after because they produce lower emissions and sometimes, they have feedstock and production advantages over fossil fuels, but their wear effects on engine components are largely unknown. In this study, the lubricity properties of a Fischer-Tropsch Gas-to-Liquid alternative fuel (Synthetic Paraffinic Kerosene-S8) and of Jet-A fuel were investigated and compared to those of Ultra Low Sulphur Diesel (ULSD). A pin-on-disk tribometer was employed to test wear and friction for a material pair of an AISI 316 steel ball on an AISI 1018 steel disk when lubricated by the fuels in this research work. Advanced digital microscopy was used to compare the wear patterns of the disks. Viscosity and density analysis of the tested fluids were also carried out.Tribometry for the fuel showed that S8 fell between Jet-A and ULSD when friction force was calculated and showed higher wear over time and after each test when compared to that of Jet-A and ULSD. An initially higher running-in friction force of 0.35N to 0.38N was observed for all three tested fluids, and then quasi-steady-state lower values of friction force of .310N for S8, 0.320 N for Jet-A and 0.295N for ULSD (the lowest observed).Wear values obtained by mass loss of the tested AISI 108 steel disks show that Jet-A and the reference fuel ULSD may yield lower wear (which is associated to better lubricity) than that of S8, and microscopy images are consistent with the wear results.more » « less
- 
            This study explores, through a full factorial experimental design, the effects of graphite concentration and spray flow rate on the morphology, thickness, and tribological performance of graphite coatings for potential tribological applications. Coatings were applied to rough substrates using varying concentrations and flow rates, followed by analysis of their morphological characteristics, roughness, thickness, coefficient of friction (COF), and wear behavior. The results revealed distinct differences in the coating morphology based on flow rate, with low-flow-rate coatings exhibiting a porous structure and higher roughness, while high-flow-rate coatings displayed denser structures with lower roughness. A COF as low as 0.09 was achieved, which represented an 86% reduction compared to uncoated steel. COF and wear track measurements showed that thickness was influential in determining friction and the extent of wear. Flow rate dictated the coating structure, quantity of transfer film on the ball, and the extent of graphite compaction in the wear track to provide a protective layer. SEM and elemental analysis further revealed that graphite coatings provided effective protection against wear, with graphite remaining embedded in the innermost crevices of the wear track. Low flow rates may be preferable for applications requiring higher roughness and porosity, while high flow rates offer advantages in achieving denser coatings and better wear resistance. Overall, this study highlights the importance of optimizing graphite concentration and spray flow rate to tailor coating morphology, thickness, and tribological performance for practical applications.more » « less
- 
            null (Ed.)The friction surfacing technique is an advanced method for creating coatings of various materials onto the surface of a similar or dissimilar material substrate. In this method, there is no external source of heat energy, and all the heat energy required in this method is generated by friction. In this paper, a novel method of friction surfacing from the side of the consumable tool is introduced. The most significant difference in this technique is that material transfer will occur from the radial surface of the consumable tool as opposed to the end of the tool as in conventional friction surfacing. In lateral friction surfacing, the side of the rotating consumable tool is pressed against the substrate surface, which generates frictional heating and shear forces at the interface between tool and substrate. A layer of tool material is transferred from the consumable rod to the substrate surface as the tool moves across. In this study, 6063 aluminum alloy and AISI 1018 carbon steel are used as the materials of consumable tool and substrate, respectively. The impact of process factors, surface roughness values, tool mass loss, and deposition thickness are discussed in detail. The experimental results of this study reveal that lateral friction surfacing produces a very smooth ultra-thin deposition with full coverage, with coating layers with roughness values in the order of 1 µm. Additionally, there is no flash formed in this technique which reduces material consumption. Moreover, temperatures at the interface between the consumable tool and workpiece were measured to be lower than for that in friction surfacing from the end of the tool, which is beneficial for the metallurgical characteristics of the deposited material.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    