skip to main content


Title: Late Pleistocene shrub expansion preceded megafauna turnover and extinctions in eastern Beringia
The collapse of the steppe-tundra biome (mammoth steppe) at the end of the Pleistocene is used as an important example of top-down ecosystem cascades, where human hunting of keystone species led to profound changes in vegetation across high latitudes in the Northern Hemisphere. Alternatively, it is argued that this biome transformation occurred through a bottom-up process, where climate-driven expansion of shrub tundra ( Betula , Salix spp.) replaced the steppe-tundra vegetation that grazing megafauna taxa relied on. In eastern Beringia, these differing hypotheses remain largely untested, in part because the precise timing and spatial pattern of Late Pleistocene shrub expansion remains poorly resolved. This uncertainty is caused by chronological ambiguity in many lake sediment records, which typically rely on radiocarbon ( 14 C) dates from bulk sediment or aquatic macrofossils—materials that are known to overestimate the age of sediment layers. Here, we reexamine Late Pleistocene pollen records for which 14 C dating of terrestrial macrofossils is available and augment these data with 14 C dates from arctic ground-squirrel middens and plant macrofossils. Comparing these paleovegetation data with a database of published 14 C dates from megafauna remains, we find the postglacial expansion of shrub tundra preceded the regional extinctions of horse ( Equus spp.) and mammoth ( Mammuthus primigenius ) and began during a period when the frequency of 14 C dates indicates large grazers were abundant. These results are not consistent with a model of top-down ecosystem cascades and support the hypothesis that climate-driven habitat loss preceded and contributed to turnover in mammal communities.  more » « less
Award ID(s):
1850578
NSF-PAR ID:
10327934
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
52
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The 3.6‐Myr sedimentary record of Lake El'gygytgyn is crucial for understanding the response of the sensitive ecosystems in the Arctic to Quaternary climate variations at orbital timescales. In this study, we synthesize previously published pollen records and biome reconstructions and perform pollen diversity analysis of the deep‐drilling core ICDP 5011‐1 from Lake El'gygytgyn for periods during the Early Pleistocene (MIS 82 – MIS 79), Early–Middle Pleistocene (MIS 31 – MIS 18) and late Middle Pleistocene (MIS 7e – MIS 6f). The results indicate that the predominance of herb tundra in the regional vegetation was most characteristic during glacials/stadials. Interglacials, in contrast, can be distinguished by the expansion of shrub communities mainly composed of birch, alder and willow. The expansion of forest biomes in the region was influenced by peaks in obliquity values, which led to increases in daylight length, which was essential for plant growth in high latitudes. An apparent long‐term decreasing trend in the tree and shrub population, accompanied by a reduction in floristic richness, was induced by stepwise cooling and drying since the Mid‐Pleistocene Transition (MPT), which is linked to the modulation of extended global ice volume during the MPT via strong snow‐ and ice‐albedo feedback effects.

     
    more » « less
  2. Our understanding of the timing of human arrival to the Americas remains fragmented, despite decades of active research and debate. Genetic research has recently led to the ‘Beringian standstill hypothesis’ (BSH), which suggests an isolated group of humans lived somewhere in Beringia for millennia during the Last Glacial, before a subgroup migrated southward into the American continents about 14 ka. Recently published organic geochemical data suggest human presence around Lake E5 on the Alaskan North Slope during the Last Glacial; however, these biomarker proxies, namely faecal sterols and polycyclic aromatic hydrocarbons (PAHs), are relatively novel and require replication to bolster their support of theBSH. We present new analyses of these biomarkers in the sediment archive of Burial Lake (latitude 68°26′N, longitude 159°10′W m a.s.l.) in northwestern Alaska. Our analyses corroborate that humans were present in Beringia during the Last Glacial and that they likely promoted fire activity. Our data also suggest that humans coexisted with Ice Age megafauna for millennia prior to their eventual extinction at the end of the Last Glacial. Lastly, we identify fire as an overlooked ecological component of the mammoth steppe ecosystem.

     
    more » « less
  3. Abstract

    Resilient landscapes have helped maintain terrestrial biodiversity during periods of climatic and environmental change. Identifying the tempo and mode of landscape transitions and the drivers of landscape resilience is critical to maintaining natural systems and preserving biodiversity given today's rapid climate and land use changes. However, resilient landscapes are difficult to recognize on short time scales, as perturbations are challenging to quantify and ecosystem transitions are rare. Here we analyze two components of North American landscape resilience over 20,000 years: residence time and recovery time. To evaluate landscape dynamics, we use plant biomes, preserved in the fossil pollen record, to examine how long a biome type persists at a given site (residence time) and how long it takes for the biome at that site to reestablish following a transition (recovery time). Biomes have a median residence time of only 230–460 years. Only 64% of biomes recover their original biome type, but recovery time is 140–290 years. Temperatures changing faster than 0.5°C per 500 years result in much reduced residence times. Following a transition, biodiverse biomes reestablish more quickly. Landscape resilience varies through time. Notably, short residence times and long recovery times directly preceded the end‐Pleistocene megafauna extinction, resulting in regional destabilization, and combining with more proximal human impacts to deliver a one‐two punch to megafauna species. Our work indicates that landscapes today are once again exhibiting low resilience, foreboding potential extinctions to come. Conservation strategies focused on improving both landscape and ecosystem resilience by increasing local connectivity and targeting regions with high richness and diverse landforms can mitigate these extinction risks.

     
    more » « less
  4. Abstract

    Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high‐latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial–millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire‐regime variability, we synthesized 27 published sediment‐charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000–4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad‐scale environmental change, including climate warming and biome‐scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire‐regime change across our study areas during the Holocene. This finding implies broad‐scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st‐century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.

     
    more » « less
  5. Explanations for areas of endemism often involve relative climatic stability, or low climate velocity, over time scales ranging from the Pleistocene to the late Cenozoic. Given that many narrowly endemic taxa in forested landscapes display discrete habitat associations, habitat stability should be similarly important for endemic persistence. Furthermore, while past climate variability is exceedingly difficult to quantify on millennial time scales, past distributions of habitats may be robustly inferred from paleoecological records. The Olympic Peninsula, Washington, supports a biota with several insular features including 29 endemic plant and animal taxa. Here I present the geographic distribution and habitat of the endemic taxa, and then examine the vegetation stability of the past 14,300 years from five pollen records associated with discrete vegetation zones on the peninsula. I show that 11 endemics have distributions centered on dry alpine scree and rock in the northeastern quadrant of the peninsula, and nine occur in shaded riparian forests in the southwest. Vegetation turnover during the post-glacial period was smallest in these areas. However, another long pollen record from the western peninsula reveals existence of shrub tundra and greatly reduced forest cover, indicating southward displacement of shaded riparian habitats by perhaps as much as 100 km. Although this study supports an association of postglacial vegetation stability with endemism, records spanning the glacial maximum indicate widespread tundra during long periods of the late Pleistocene and therefore suggest southern displacement of forest-associated endemics. While some of the alpine scree-associated endemics may have persisted in situ, many others likely arrived via a variety of dispersal trajectories. These histories include dispersal from southern refugia towards ocean barriers preventing further northward dispersal, contraction from more widespread distributions, and recent divergence from sister taxa. This study shows that paleoecological records can cast strong doubt on the inference that areas of endemism necessarily imply in situ glacial survival. 
    more » « less