skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling quantum cryptography using IBM QX
Quantum computation is gaining popularity as a practical application of quantum physics based on quantum superposition, entanglements, and the no-cloning theorem. Because the security of electronic transactions is vital, various cryptographic protocols based on distributed keys between the intended participants have been created. Complex mathematical models and lengthy keys determine the security of these protocols. These keys, on the other hand, are readily broken. The security of information has undergone a paradigm shift as a result of quantum technologies. The quantum circuits in this thesis were constructed utilizing the IBM quantum experience platform with the goal of realizing safe quantum key distribution (BB84 algorithm). With increasing the number of runs, the possibility of these circuits being realized on a practical quantum computer accessed through the IBM QX online platform increased. Furthermore, there is a significant likelihood of identifying the presence of a third party. The probability of identifying a third-party stealing information increases as the number of qubits increases.  more » « less
Award ID(s):
2011900
PAR ID:
10328037
Author(s) / Creator(s):
Date Published:
Journal Name:
Bulletin of the American Physical Society, March Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Third-party security analytics allow companies to outsource threat monitoring tasks to teams of experts and avoid the costs of in-house security operations centers. By analyzing telemetry data from many clients these services are able to offer enhanced insights, identifying global trends and spotting threats before they reach most customers. Unfortunately, the aggregation that drives these insights simultaneously risks exposing sensitive client data if it is not properly sanitized and tracked. In this work, we present SCIFFS, an automated information flow monitoring framework for preventing sensitive data exposure in third-party security analytics platforms. SCIFFS performs decentralized information flow control over customer data it in a serverless setting, leveraging the innate polyinstantiated nature of serverless functions to assure precise and lightweight tracking of data flows. Evaluating SCIFFS against a proof-of-concept security analytics framework on the widely-used OpenFaaS platform, we demonstrate that our solution supports common analyst workflows data ingestion, custom dashboards, threat hunting) while imposing just 3.87% runtime overhead on event ingestion and the overhead on aggregation queries grows linearly with the number of records in the database (e.g., 18.75% for 50,000 records and 104.27% for 500,000 records) as compared to an insecure baseline. Thus, SCIFFS not only establishes a privacy-respecting model for third-party security analytics, but also highlights the opportunities for security-sensitive applications in the serverless computing model. 
    more » « less
  2. Randomness is integral to computer security, influencing fields such as cryptography and machine learning. In the context of cybersecurity, particularly for the Internet of Things (IoT), high levels of randomness are essential to secure cryptographic protocols. Quantum computing introduces significant risks to traditional encryption methods. To address these challenges, we propose investigating a quantum-safe solution for IoT-trusted computing. Specifically, we implement the first lightweight, practical integration of a quantum random number generator (QRNG) with a software-based trusted platform module (TPM) to create a deployable quantum trusted platform module (QTPM) prototype for IoT systems to improve cryptographic capabilities. The proposed quantum entropy as a service (QEaaS) framework further extends quantum entropy access to legacy and resource-constrained devices. Through the evaluation, we compare the performance of QRNG with traditional Pseudo-random Number Generators (PRNGs), demonstrating the effectiveness of the quantum TPM. Our paper highlights the transformative potential of integrating quantum technology to bolster IoT security. 
    more » « less
  3. Mobile apps are widely used and often process users’ sensitive data. Many taint analysis tools have been applied to analyze sensitive information flows and report data leaks in apps. These tools require a list of sources (where sensitive data is accessed) as input, and researchers have constructed such lists within the Android platform by identifying Android API methods that allow access to sensitive data. However, app developers may also define methods or use third-party library’s methods for accessing data. It is difficult to collect such source methods because they are unique to the apps, and there are a large number of third-party libraries available on the market that evolve over time. To address this problem, we propose DAISY, a Dynamic-Analysis-Induced Source discoverY approach for identifying methods that return sensitive information from apps and third-party libraries. Trained on an automatically labeled data set of methods and their calling context, DAISY identifies sensitive methods in unseen apps. We evaluated DAISY on real-world apps and the results show that DAISY can achieve an overall precision of 77.9% when reporting the most confident results. Most of the identified sources and leaks cannot be detected by existing technologies. 
    more » « less
  4. Quantum computing is gaining momentum in revolutionizing the way we approach complex problem-solving. However, the practical implementation of quantum algorithms remains a significant challenge due to the error-prone and hardware limits of near-term quantum devices. For instance, physical qubit connections are limited, which necessitates the use of quantum SWAP gates to dynamically transform the logical topology during execution. In addition, to optimize fidelity, it is essential to ensure that 1) the allocated hardware has a low error rate and 2) the number of SWAP gates injected into the circuit is minimized. To address these challenges, we propose a suite of algorithms: the Fidelity-aware Graph Extraction Algorithm (FGEA) is used to identify the hardware region with the lowest probability of error, the Frequency-based Mapping Algorithm (FMA) allocates logical-physical qubits that reduce the potential distance of topological transformation, and the Heuristic Routing Algorithm (HRA) searches for an optimal swapping injection strategy. We evaluate the proposed algorithms on the IBM-provided Noisy Intermediate-Scale Quantum (NISQ) computer, using a dataset consisting of 17 different quantum circuits of various sizes. The circuits are executed on the IBM Toronto Falcon processor. The three proposed algorithms outperform the existing SABRE algorithm in reducing the number of SWAP gates required. Therefore, our proposed algorithms hold significant promise in enhancing the fidelity and reducing the number of SWAP gates required in implementing Quantum algorithms. 
    more » « less
  5. Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit. 
    more » « less