Abstract Temperature increases due to climate change have affected the distribution and severity of diseases in natural systems, causing outbreaks that can destroy host populations. Host identity, diversity, and the associated microbiome can affect host responses to both infection and temperature, but little is known about how they could function as important mediators of disease in altered thermal environments. We conducted an 8‐week warming experiment to test the independent and interactive effects of warming, host genotypic identity, and host genotypic diversity on the prevalence and intensity of infections of seagrass (Zostera marina) by the wasting disease parasite (Labyrinthula zosterae). At elevated temperatures, we found that genotypically diverse host assemblages had reduced infection intensity, but not reduced prevalence, relative to less diverse assemblages. This dilution effect on parasite intensity was the result of both host composition effects as well as emergent properties of biodiversity. In contrast with the benefits of genotypic diversity under warming, diversity actually increased parasite intensity slightly in ambient temperatures. We found mixed support for the hypothesis that a growth–defense trade‐off contributed to elevated disease intensity under warming. Changes in the abundance (but not composition) of a few taxa in the host microbiome were correlated with genotype‐specific responses to wasting disease infections under warming, consistent with the emerging evidence linking changes in the host microbiome to the outcome of host–parasite interactions. This work emphasizes the context dependence of biodiversity–disease relationships and highlights the potential importance of interactions among biodiversity loss, climate change, and disease outbreaks in a key foundation species.
more »
« less
Phanerozoic parasitism and marine metazoan diversity: Dilution versus amplification
Growing evidence suggests that biodiversity mediates parasite prevalence. We have compiled the first global database on occurrences and prevalence of marine parasitism throughout the Phanerozoic and assess the relationship with biodiversity to test if there is support for amplification or dilution of parasitism at the macroevolutionary scale. Median prevalence values by era are 5% for the Paleozoic, 4% for the Mesozoic, and a significant increase to 10% for the Cenozoic. We calculated period-level shareholder quorum sub-sampled (SQS) estimates of mean sampled diversity, three-timer (3T) origination rates, and 3T extinction rates for the most abundant host clades in the Paleobiology Database to compare to both occurrences of parasitism and the more informative parasite prevalence values. Generalized linear models (GLMs) of parasite occurrences and SQS diversity measures support both the amplification (all taxa pooled, crinoids and blastoids, and molluscs) and dilution hypotheses (arthropods, cnidarians, and bivalves). GLMs of prevalence and SQS diversity measures support the amplification hypothesis (all taxa pooled and molluscs). Though likely scale-dependent, parasitism has increased through the Phanerozoic and clear patterns primarily support the amplification of parasitism with biodiversity in the history of life. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.
more »
« less
- Award ID(s):
- 1650745
- PAR ID:
- 10328115
- Date Published:
- Journal Name:
- Philosophical transactions
- Volume:
- 376
- ISSN:
- 1471-2970
- Page Range / eLocation ID:
- 20200366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Diverse host communities commonly inhibit the spread of parasites at small scales. However, the generality of this effect remains controversial. Here, we present the analysis of 205 biodiversity–disease relationships on 67 parasite species to test whether biodiversity–disease relationships are generally nonlinear, moderated by spatial scale, and sensitive to underrepresentation in the literature. Our analysis of the published literature reveals that biodiversity–disease relationships are generally hump-shaped (i.e., nonlinear) and biodiversity generally inhibits disease at local scales, but this effect weakens as spatial scale increases. Spatial scale is, however, related to study design and parasite type, highlighting the need for additional multiscale research. Few studies are unrepresentative of communities at low diversity, but missing data at low diversity from field studies could result in underreporting of amplification effects. Experiments appear to underrepresent high-diversity communities, which could result in underreporting of dilution effects. Despite context dependence, biodiversity loss at local scales appears to increase disease, suggesting that at local scales, biodiversity loss could negatively impact human and wildlife populations.more » « less
-
High host biodiversity is hypothesized to dilute the risk of vector‐borne diseases if many host species are ‘dead ends' that cannot effectively transmit the disease and low‐diversity areas tend to be dominated by competent host species. However, many studies on biodiversity–disease relationships characterize host biodiversity at single, local spatial scales, which complicates efforts to forecast disease risk if associations between host biodiversity and disease change with spatial scale. Here, our objective is to evaluate the spatial scaling of relationships between host biodiversity andBorrelia(the bacterial taxon which causes Lyme disease) infection prevalence in small mammals. We compared the associations between infection prevalence and small mammal host diversity for local communities (individual plots) and metacommunities (multiple plots aggregated within a landscape) sampled by the National Ecological Observatory Network (NEON), an emerging continental‐scale environmental monitoring program with a hierarchical sampling design. We applied a multispecies, spatially‐stratified capture–recapture model to a trapping dataset to estimate five small mammal biodiversity metrics, which we used to predict infection status for a subset of trapped individuals. We found that relationships betweenBorreliainfection prevalence and biodiversity did indeed vary when biodiversity was quantified at different spatial scales but that these scaling behaviors were idiosyncratic among the five biodiversity metrics. For example, species richness of local communities showed a negative (dilution) effect on infection prevalence, while species richness of the small mammal metacommunity showed a positive (amplification) effect on infection prevalence. Our modeling approach can inform future analyses as data from similar monitoring programs accumulate and become increasingly available through time. Our results indicate that a focus on single spatial scales when assessing the influence of biodiversity on disease risk provides an incomplete picture of the complexity of disease dynamics in ecosystems.more » « less
-
Abstract Identifying the factors that affect host–parasite interactions is essential for understanding the ecology and dynamics of vector‐borne diseases and may be an important component of predicting human disease risk. Characteristics of hosts themselves (e.g., body condition, host behavior, immune defenses) may affect the likelihood of parasitism. However, despite highly variable rates of parasitism and infection in wild populations, identifying widespread links between individual characteristics and heterogeneity in parasite acquisition has proven challenging because many zoonoses exist over wide geographic extents and exhibit both spatial and temporal heterogeneity in prevalence and individual and population‐level effects. Using seven years of data collected by the National Ecological Observatory Network (NEON), we examined relationships among individual host condition, behavior, and parasitism byIxodidticks in a keystone host species, the white‐footed mouse,Peromyscus leucopus. We found that individual condition, specifically sex, body mass, and reproductive condition, had both direct and indirect effects on parasitism by ticks, but the nature of these effects differed for parasitism by larval versus nymphal ticks. We also found that condition differences influenced rodent behavior, and behavior directly affected the rates of parasitism, with individual mice that moved farther being more likely to carry ticks. This study illustrates how individual‐level data can be examined using large‐scale datasets to draw inference and uncover broad patterns in host–parasite encounters at unprecedented spatial scales. Our results suggest that intraspecific variation in the movement ecology of hosts may affect host–parasite encounter rates and, ultimately, alter zoonotic disease risk through anthropogenic modifications and natural environmental conditions that alter host space use.more » « less
-
Long-term data allow ecologists to assess trajectories of population abundance. Without this context, it is impossible to know whether a taxon is thriving or declining to extinction. For parasites of wildlife, there are few long-term data—a gap that creates an impediment to managing parasite biodiversity and infectious threats in a changing world. We produced a century-scale time series of metazoan parasite abundance and used it to test whether parasitism is changing in Puget Sound, United States, and, if so, why. We performed parasitological dissection of fluid-preserved specimens held in natural history collections for eight fish species collected between 1880 and 2019. We found that parasite taxa using three or more obligately required host species—a group that comprised 52% of the parasite taxa we detected—declined in abundance at a rate of 10.9% per decade, whereas no change in abundance was detected for parasites using one or two obligately required host species. We tested several potential mechanisms for the decline in 3+-host parasites and found that parasite abundance was negatively correlated with sea surface temperature, diminishing at a rate of 38% for every 1 °C increase. Although the temperature effect was strong, it did not explain all variability in parasite burden, suggesting that other factors may also have contributed to the long-term declines we observed. These data document one century of climate-associated parasite decline in Puget Sound—a massive loss of biodiversity, undetected until now.more » « less
An official website of the United States government

