In this paper, we present a new inpainting framework for recovering missing regions of video frames. Compared with image inpainting, performing this task on video presents new challenges such as how to preserving temporal consistency and spatial details, as well as how to handle arbitrary input video size and length fast and efficiently. Towards this end, we propose a novel deep learning architecture which incorporates ConvLSTM and optical flow for modeling the spatial-temporal consistency in videos. It also saves much computational resource such that our method can handle videos with larger frame size and arbitrary length streamingly in real-time. Furthermore, to generate an accurate optical flow from corrupted frames, we propose a robust flow generation module, where two sources of flows are fed and a flow blending network is trained to fuse them. We conduct extensive experiments to evaluate our method in various scenarios and different datasets, both qualitatively and quantitatively. The experimental results demonstrate the superior of our method compared with the state-of-the-art inpainting approaches.
more »
« less
Temporally Consistent Relighting for Portrait Videos
Ensuring ideal lighting when recording videos of people can be a daunting task requiring a controlled environment and expensive equipment. Methods were recently proposed to perform portrait relighting for still images, enabling after-the-fact lighting enhancement. However, naively applying these methods on each frame independently yields videos plagued with flickering artifacts. In this work, we propose the first method to perform temporally consistent video portrait relighting. To achieve this, our method optimizes end-to-end both desired lighting and temporal consistency jointly. We do not require ground truth lighting annotations during training, allowing us to take advantage of the large corpus of portrait videos already available on the internet. We demonstrate that our method outperforms previous work in balancing accurate relighting and temporal consistency on a number of real-world portrait videos
more »
« less
- Award ID(s):
- 1909192
- PAR ID:
- 10328177
- Date Published:
- Journal Name:
- Workshop on Applications of Computational Imaging co-located with the IEEE/CVF Winter Conference on Applications of Computer Vision
- Page Range / eLocation ID:
- 719 - 728
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reconstructing 3D objects in natural environments requires solving the ill-posed problem of geometry, spatially-varying material, and lighting estimation. As such, many approaches impractically constrain to a dark environment, use controlled lighting rigs, or use few handheld captures but suffer reduced quality. We develop a method that uses just two smartphone exposures captured in ambient lighting to reconstruct appearance more accurately and practically than baseline methods. Our insight is that we can use a flash/no-flash RGB-D pair to pose an inverse rendering problem using point lighting. This allows efficient differentiable rendering to optimize depth and normals from a good initialization and so also the simultaneous optimization of diffuse environment illumination and SVBRDF material. We find that this reduces diffuse albedo error by 25%, specular error by 46%, and normal error by 30% against single and paired-image baselines that use learning-based techniques. Given that our approach is practical for everyday solid objects, we enable photorealistic relighting for mobile photography and easier content creation for augmented reality.more » « less
-
In the era of generative AI, integrating video generation models into robotics opens new possibilities for the general-purpose robot agent. This paper introduces imitation learning with latent video planning (VILP). We propose a latent video diffusion model to generate predictive robot videos that adhere to temporal consistency to a good degree. Our method is able to generate highly time-aligned videos from multiple views, which is crucial for robot policy learning. Our video generation model is highly time-effcient. For example, it can generate videos from two distinct perspectives, each consisting of six frames with a resolution of 96x160 pixels, at a rate of 5 Hz. In the experiments, we demonstrate that VILP outperforms the existing video generation robot policy across several metrics: training costs, inference speed, temporal consistency of generated videos, and the performance of the policy. We also compared our method with other imitation learning methods. Our fndings indicate that VILP can rely less on extensive high-quality task-specifc robot action data while still maintaining robust performance. In addition, VILP possesses robust capabilities in representing multi-modal action distributions. Our paper provides a practical example of how to effectively integrate video generation models into robot policies, potentially offering insights for related felds and directions. For more details, please refer to our open-source repository https://github.com/ZhengtongXu/VILP.more » « less
-
Abstract Precomputed Radiance Transfer (PRT) remains an attractive solution for real‐time rendering of complex light transport effects such as glossy global illumination. After precomputation, we can relight the scene with new environment maps while changing viewpoint in real‐time. However, practical PRT methods are usually limited to low‐frequency spherical harmonic lighting. All‐frequency techniques using wavelets are promising but have so far had little practical impact. The curse of dimensionality and much higher data requirements have typically limited them to relighting with fixed view or only direct lighting with triple product integrals. In this paper, we demonstrate a hybrid neural‐wavelet PRT solution to high‐frequency indirect illumination, including glossy reflection, for relighting with changing view. Specifically, we seek to represent the light transport function in the Haar wavelet basis. For global illumination, we learn the wavelet transport using a small multi‐layer perceptron (MLP) applied to a feature field as a function of spatial location and wavelet index, with reflected direction and material parameters being other MLP inputs. We optimize/learn the feature field (compactly represented by a tensor decomposition) and MLP parameters from multiple images of the scene under different lighting and viewing conditions. We demonstrate real‐time (512 x 512 at 24 FPS, 800 x 600 at 13 FPS) precomputed rendering of challenging scenes involving view‐dependent reflections and even caustics.more » « less
-
We present a recurrent network for 3D reconstruction of neurons that sequentially generates binary masks for every object in an image with spatio-temporal consistency. Our network models consistency in two parts: (i) local, which allows exploring non-occluding and temporally-adjacent object relationships with bi-directional recurrence. (ii) non-local, which allows exploring long-range object relationships in the temporal domain with skip connections. Our proposed network is end-to-end trainable from an input image to a sequence of object masks, and, compared to methods relying on object boundaries, its output does not require post-processing. We evaluate our method on three benchmarks for neuron segmentation and achieved state-of-the-art performance on the SNEMI3D challenge.more » « less
An official website of the United States government

