skip to main content

Title: Dynamic Pricing of Wireless Internet Based on Usage and Stochastically Changing Capacity
Problem definition: Inspired by new developments in dynamic spectrum access, we study the dynamic pricing of wireless Internet access when demand and capacity (bandwidth) are stochastic. Academic/practical relevance: The demand for wireless Internet access has increased enormously. However, the spectrum available to wireless service providers is limited. The industry has, thus, altered conventional license-based spectrum access policies through unlicensed spectrum operations. The additional spectrum obtained through these operations has stochastic capacity. Thus, the pricing of this service by the service provider has novel challenges. The problem considered in this paper is, therefore, of high practical relevance and new to the academic literature. Methodology: We study this pricing problem using a Markov decision process model in which customers are posted dynamic prices based on their bandwidth requirement and the available capacity. Results: We characterize the structure of the optimal pricing policy as a function of the system state and of the input parameters. Because it is impossible to solve this problem for practically large state spaces, we propose a heuristic dynamic pricing policy that performs very well, particularly when the ratio of capacity to demand rate is low. Managerial implications: We demonstrate the value of using a dynamic heuristic pricing policy more » compared with the myopic and optimal static policies. The previous literature has studied similar systems with fixed capacity and has characterized conditions under which myopic policies perform well. In contrast, our setting has dynamic (stochastic) capacity, and we find that identifying good state-dependent heuristic pricing policies is of greater importance. Our heuristic policy is computationally more tractable and easier to implement than the optimal dynamic and static pricing policies. It also provides a significant performance improvement relative to the myopic and optimal static policies when capacity is scarce, a condition that holds for the practical setting that motivated this research. « less
Authors:
; ; ;
Award ID(s):
1731833
Publication Date:
NSF-PAR ID:
10088262
Journal Name:
Manufacturing & service operations management
ISSN:
1523-4614
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a fundamental pricing model in which a fixed number of units of a reusable resource are used to serve customers. Customers arrive to the system according to a stochastic process and, upon arrival, decide whether to purchase the service, depending on their willingness to pay and the current price. The service time during which the resource is used by the customer is stochastic, and the firm may incur a service cost. This model represents various markets for reusable resources, such as cloud computing, shared vehicles, rotable parts, and hotel rooms. In the present paper, we analyze this pricing problem when the firm attempts to maximize a weighted combination of three central metrics: profit, market share, and service level. Under Poisson arrivals, exponential service times, and standard assumptions on the willingness-to-pay distribution, we establish a series of results that characterize the performance of static pricing in such environments. In particular, although an optimal policy is fully dynamic in such a context, we prove that a static pricing policy simultaneously guarantees 78.9% of the profit, market share, and service level from the optimal policy. Notably, this result holds for any service rate and number of units the firm operates. Ourmore »proof technique relies on a judicious construction of a static price that is derived directly from the optimal dynamic pricing policy. In the special case in which there are two units and the induced demand is linear, we also prove that the static policy guarantees 95.5% of the profit from the optimal policy. Our numerical findings on a large test bed of instances suggest that the latter result is quite indicative of the profit obtained by the static pricing policy across all parameters.« less
  2. The emergence of the sharing economy in urban transportation networks has enabled new fast, convenient and accessible mobility services referred to as Mobilty-on-Demand systems (e.g., Uber, Lyft, DiDi). These platforms have flourished in the last decade around the globe and face many operational challenges in order to be competitive and provide good quality of service. A crucial step in the effective operation of these systems is to reduce customers' waiting time while properly selecting the optimal fleet size and pricing policy. In this paper, we jointly tackle three operational decisions: (i) fleet size, (ii) pricing, and (iii) rebalancing, in order to maximize the platform's profit or its customers' welfare. To accomplish this, we first devise an optimization framework which gives rise to a static policy. Then, we elaborate and propose dynamic policies that are more responsive to perturbations such as unexpected increases in demand. We test this framework in a simulation environment using three case studies and leveraging traffic flow and taxi data from Eastern Massachusetts, New York City, and Chicago. Our results show that solving the problem jointly could increase profits between 1% and up to 50%, depending on the benchmark. Moreover, we observe that the proposed fleet sizemore »yield utilization of the vehicles in the fleet is around 75% compared to private vehicle utilization of 5%.« less
  3. We consider the periodic review dynamic pricing and inventory control problem with fixed ordering cost. Demand is random and price dependent, and unsatisfied demand is backlogged. With complete demand information, the celebrated [Formula: see text] policy is proved to be optimal, where s and S are the reorder point and order-up-to level for ordering strategy, and [Formula: see text], a function of on-hand inventory level, characterizes the pricing strategy. In this paper, we consider incomplete demand information and develop online learning algorithms whose average profit approaches that of the optimal [Formula: see text] with a tight [Formula: see text] regret rate. A number of salient features differentiate our work from the existing online learning researches in the operations management (OM) literature. First, computing the optimal [Formula: see text] policy requires solving a dynamic programming (DP) over multiple periods involving unknown quantities, which is different from the majority of learning problems in OM that only require solving single-period optimization questions. It is hence challenging to establish stability results through DP recursions, which we accomplish by proving uniform convergence of the profit-to-go function. The necessity of analyzing action-dependent state transition over multiple periods resembles the reinforcement learning question, considerably more difficult thanmore »existing bandit learning algorithms. Second, the pricing function [Formula: see text] is of infinite dimension, and approaching it is much more challenging than approaching a finite number of parameters as seen in existing researches. The demand-price relationship is estimated based on upper confidence bound, but the confidence interval cannot be explicitly calculated due to the complexity of the DP recursion. Finally, because of the multiperiod nature of [Formula: see text] policies the actual distribution of the randomness in demand plays an important role in determining the optimal pricing strategy [Formula: see text], which is unknown to the learner a priori. In this paper, the demand randomness is approximated by an empirical distribution constructed using dependent samples, and a novel Wasserstein metric-based argument is employed to prove convergence of the empirical distribution. This paper was accepted by J. George Shanthikumar, big data analytics.« less
  4. The property of (quasi-)reversibility of Markov chains have led to elegant characterization of steady-state distribution for complex queueing networks, e.g. celebrated Jackson networks, BCMP (Baskett, Chandi, Muntz, Palacois) and Kelly theorem. In a nutshell, despite the complicated interaction, in the steady-state, the queues in such networks exhibit independence and subsequently lead to explicit calculations of distributional properties of the queuing network that may seem impossible at the outset. The model of stochastic processing network (cf. Harrison 2000) captures variety of dynamic resource allocation problems including the flow-level networks used for modeling bandwidth sharing in the Internet, switched networks (cf. Shah, Wischik 2006) for modeling packet scheduling in the Internet router and wireless medium access, and hybrid flow-packet networks for modeling job-and-packet level scheduling in data centers. Unlike before, an appropriate resource allocation or scheduling policy is required in such networks to achieve good performance. Given the complexity, asymptotic analytic approaches such as fluid model or Lyapunov-Foster criteria to establish positive-recurrence and heavy traffic or diffusion approximation to characterize the scaled steady-state distribution became method of choice. A remarkable progress has been made along these lines over the past few decades, but there is a need for much more to matchmore »the explicit calculations in the context of reversible networks. In this work, we will present an alternative to this approach that leads to non-asymptotic, explicit characterization of steady-state distribution akin BCMP / Kelly theorems. This involves (a) identifying a "relaxation" of the given stochastic processing network in terms of an appropriate (quasi-)reversible queueing network, and (b) finding a resource allocation or scheduling policy of interest that "emulates" the "relaxed" networks within "small error". The proof is in the puddling -- we will present three examples of this program: (i) distributed scheduling in wireless network, (ii) scheduling in switched networks, and (iii) flow-packet scheduling in a data center. The notion of "baseline performance" (cf. Harrison, Mandayam, Shah, Yang 2014) will naturally emerges as a consequence of this program. We will discuss open questions pertaining multi-hop networks and computation complexity.« less
  5. Reverse logistics has been gaining recognition in practice (and theory) for helping companies better match supply with demand, and thus reduce costs in their supply chains. In this paper, we study reverse logistics from the perspective of a supply chain in which each location can initiate multiple flows of product. Our first objective is to jointly optimize ordering decisions pertaining to regular, reverse and expedited flows of product in a stochastic, multi-stage inventory model of a logistics supply chain, in which the physical transformation of the product is completed at the most upstream location in the system. Due to those multiple flows of product, the feasible region for the problem acquires multi-dimensional boundaries that lead to the curse of dimensionality. To address this challenge, we develop a different solution method that allows us to reduce the dimensionality of the feasible region and, subsequently, identify the structure of the optimal policy. We refer to this policy as a nested echelon base-stock policy, as decisions for different product flows are sequentially nested within each other. We show that this policy renders the model analytically and numerically tractable. Our results provide actionable policies for firms to jointly manage three different product flows inmore »their supply chains, and allow us arrive at insights regarding the main drivers of the value of reverse logistics. One of our key findings is that, when it comes to the value generated by reverse logistics, demand variability (i.e., demand uncertainty across periods) matters more than demand volatility (i.e., demand uncertainty within each period). This is because, in the absence of demand variability, it is effectively never optimal to return product upstream, regardless of the level of inherent demand volatility. Our second objective is to extend our analysis to product transforming-supply chains, in which product transformation is allowed to occur at each location. In such a system, it becomes necessary to keep track of both the location and stage of completion of each unit of inventory, so that the number of state and decisions variables increases with the square of the number of locations in the system. To analyze such a supply chain, we first identify a policy that provides a lower bound on the total cost. Then, we establish a special decomposition of the objective cost function that allows us to propose a novel heuristic policy. We find that the performance gap of our heuristic policy relative to the lower-bounding policy averages less than 5% across a range of parameters and supply chain lengths.« less