skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Study of Ocean Bottom Detector for observation of geo-neutrino from the mantle
Abstract Observation of anti-neutrinos emitted from radioactive isotopes inside Earth(geo-neutrinos) brings direct information on the Earth’s chemical composition and its heat balance, which strongly relate to the Earth’s dynamics. To date, two experiments (KamLAND and Borexino) have measured geo-neutrinos and constrained the range of acceptable models for the Earth’s chemical composition, but distinguishing the mantle flux by land-based detectors is challenging as the crust signal is about 70% of the total anti-neutrino flux. Given the oceanic crust is thinner and has lower concentration of radioactive elements than continental crust, geo-neutrino detector in the ocean, Ocean Bottom Detector (OBD), makes it sensitive to geo-neutrinos originating from the Earth’s mantle. Our working group was jointly constructed from interdisciplinary communities in Japan which include particle physics, geoscience, and ocean engineering. We have started to work on technological developments of OBD. We are now developing a 20 kg prototype liquid scintillator detector. This detector will undergo operation deployment tests at 1 km depth seafloor in 2022.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Physics: Conference Series
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver34S-enriched sulfur to produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth surface reservoirs.

    more » « less
  2. null (Ed.)
    Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk’s lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon forming debris ring with mostly a proto-Earth’s mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (~0.5% of the mass of the Earth’s mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable. 
    more » « less
  3. The Earth’s mantle is heterogeneous as a result of early planetary differentiation and subsequent crustal recycling during plate tectonics. Radiogenic isotope signatures of mid-ocean ridge basalts have been used for decades to map mantle composition, defining the depleted mantle endmember. These lavas, however, homogenize via magma mixing and may not capture the full chemical variability of their mantle source. Here, we show that the depleted mantle is significantly more heterogeneous than previously inferred from the compositions of lavas at the surface, extending to highly enriched compositions. We perform high-spatial-resolution isotopic analyses on clinopyroxene and plagioclase from lower crustal gabbros drilled on a depleted ridge segment of the northern Mid-Atlantic Ridge. These primitive cumulate minerals record nearly the full heterogeneity observed along the northern Mid-Atlantic Ridge, including hotspots. Our results demonstrate that substantial mantle heterogeneity is concealed in the lower oceanic crust and that melts derived from distinct mantle components can be delivered to the lower crust on a centimetre scale. These findings provide a starting point for re-evaluation of models of plate recycling, mantle convection and melt transport in the mantle and the crust. 
    more » « less
  4. Zirconium (Zr) stable isotopes recently emerged as potential tracers of magmatic processes and, as a result, their behavior in high-temperature environments have been the focus of extensive characterization. In contrast, few studies have focused on Zr behavior and isotopic fractionation in low temperature or aqueous environments. Here, we describe a new analytical routine for highly precise and accurate analysis of Zr isotopes of water samples, using a combination of double-spike and iron co-precipitation methods. To assess the impact of potential systematic biases a series of experiments were conducted on natural and synthetic water samples. Our results show that the spike-to-sample ratio, matrix composition, and high field-strength element (HFSE) concentration have negligible effects on measured seawater Zr isotopic compositions, and that the Fe co-precipitation method used yields accurate and precise Zr isotope data. We thus apply this method to natural seawater samples collected from a water column profile in the Pacific Ocean off the coast of California, with depths ranging from 5 to 711 m. We find that the natural seawater samples are highly fractionated relative to solid-Earth values and display marked variability in δ94/90Zr as a function of depth, ranging from ∼ +0.650 ‰ near the surface, to + 1.530 ‰ near the profile bottom, with an analytical uncertainty of ± ∼0.045 ‰ (2 SE, external reproducibility). The δ94/90Zr value of seawater is much higher than that of Earth’s mantle and continental crust, which has a δ94/90Zr value near zero, indicating the presence of processes in the hydrosphere capable of inducing large mass-dependent fractionation. Furthermore, the seawater δ94/90Zr value exhibits systematic variations with respect to water depth and salinity, suggesting that Zr isotopic compositions may be sensitive to seawater chemical properties and source highlighting its potential utility as a tracer of biogeochemical processes within the ocean. 
    more » « less
  5. Abstract

    High-energy tau neutrinos are rarely produced in atmospheric cosmic-ray showers or at cosmic particle accelerators, but are expected to emerge during neutrino propagation over cosmic distances due to flavor mixing. When high energy tau neutrinos interact inside the IceCube detector, two spatially separated energy depositions may be resolved, the first from the charged current interaction and the second from the tau lepton decay. We report a novel analysis of 7.5 years of IceCube data that identifies two candidate tau neutrinos among the 60 “High-Energy Starting Events” (HESE) collected during that period. The HESE sample offers high purity, all-sky sensitivity, and distinct observational signatures for each neutrino flavor, enabling a new measurement of the flavor composition. The measured astrophysical neutrino flavor composition is consistent with expectations, and an astrophysical tau neutrino flux is indicated at 2.8$$\sigma $$σsignificance.

    more » « less