Abstract Numerous anthropogenic activities like the construction of large dams, storages, and barrages changed the watershed characteristics impacting ecosystem health. In this study, the hydrological alterations (HAs) that have occurred in the Bhima River due to the construction of the Ujjani dam were analyzed. The hydraulic analysis is also performed to determine the hydraulic parameter and recommend the lowest flow release from the dam for improving ecosystem health. Fifty-eight years of data starting from the year 1960 to 2018 were gathered at Yadgir station, which is located downstream of the Ujjani dam. The data were divided into pre- and post-construction river flow discharge. To check for the change in the river flow regime for the post-dam construction period, HA was calculated using Flow Health Software (FHS). The results demonstrate that the dam impoundment reduces high flows primarily by storing flood flow for water supply, irrigation, etc. The velocity and depth provided by the environmental design flow for a flow health (FH) score of 0.62 give a very good habitat to fishes. A minimum release of 24.8 m3/s from the dam is recommended. This study will help policymakers mitigate the impacts of degrading ecosystem health of the Bhima River. 
                        more » 
                        « less   
                    
                            
                            “The Dammed Body: Thinking Historically about Water Security and Public Health”
                        
                    
    
            This essay traces the historical relationship between the construction of the Nile River and the prevalence of disease in Egypt in the long twentieth century, with an eye to the relevance of this history to other regions on the African continent impacted by the construction of large dams. Beginning in the second decade of the nineteenth century and stretching through the 1970s, the Nile River underwent a dramatic process of transformation. Two large dams–the 1902 Khazan Aswan and the Aswan High Dam–were constructed on the river. Networks of perennial irrigation canals facilitated the practice of year-round agricultural production and the High Dam provided electricity. The remaking of Egypt’s riparian ecologies also had important implications for the health of Egypt’s population as these ecologies were associated with new landscapes of disease and approaches to biomedical treatment. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1848557
- PAR ID:
- 10328606
- Date Published:
- Journal Name:
- Daedalus
- Volume:
- 150
- Issue:
- 4
- ISSN:
- 0011-5266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Centuries‐long intensive land‐use change in the north‐eastern United States provides the opportunity to study the timescale of geomorphic response to anthropogenic disturbances. In this region, forest‐clearing and agricultural practices following EuroAmerican settlement led to deposition of legacy sediment along valley bottoms, including behind mill dams. The South River in western Massachusetts experienced two generations of damming, beginning with mill dams up to 6‐m high in the eighteenth–nineteenth century, and followed by construction of the Conway Electric Dam (CED), a 17‐m‐tall hydroelectric dam near the watershed outlet in 1906. We use the mercury (Hg) concentration in upstream deposits along the South River to constrain the magnitude, source, and timing of inputs to the CED impoundment. Based on cesium‐137 (137Cs) chronology and results from a sediment mixing model, remobilized legacy sediment comprised% of the sediment load in the South River prior to 1954; thereafter, from 1954 to 1980s, erosion from glacial deposits likely dominated (63 ± 14%), but with legacy sediments still a substantial source (37 ± 14%). We also use the CED reservoir deposits to estimate sediment yield through time, and find it decreased after 1952. These results are consistent with high rates of mobilization of legacy sediment as historic dams breached in the early twentieth century, and suggest rapid initial response to channel incision, followed by a long decay in the second half of the century, that is likely dependent on large flood events to access legacy sediment stored in banks. Identifying sources of sediment in a watershed and quantifying erosion rates can help to guide river restoration practices. Our findings suggest a short fluvial recovery time from the eighteenth–nineteenth century to perturbation during the first half of the twentieth century, with subsequent return to a dominant long‐term signal from erosion of glacial deposits, with anthropogenic sediment persisting as a secondary source. © 2020 John Wiley & Sons, Ltd.more » « less
- 
            Two recently constructed run-of-the-river dams (Santo Antônio and Jirau), along the Madeira River in Brazil, have been controversial due to their large unquantified impacts on (1) land use and land cover (LULC) and (2) on the area that would be flooded. Based on annual LULC data from 1985 to 2017, this study integrated intensity analysis and difference components methods to analyze the impacts of the two dams on the annual flooded area in upstream, midstream, and downstream regions of the Madeira River. The dam construction significantly influenced LULC change intensity in the upstream and midstream regions since 2011 and 2010, respectively. An increase of 18.5% of the newly flooded area (462.58 km2) in the post-dam construction period was observed. The water gross gain intensity was active during 2011–2017 and 2011–2014 in upstream and midstream, respectively. The dominant difference components of water change were exchanged in the pre-dam period and became quantity in the post-dam period for both upstream and midstream regions. Forest was the major land category replaced by water; however, the highest gain intensities occurred in other non-vegetated areas in upstream and midstream. This study provided a useful approach for characterizing impacts of dam construction on water area change.more » « less
- 
            Abstract Large dams are a leading cause of river ecosystem degradation. Although dams have cumulative effects as water flows downstream in a river network, most flow alteration research has focused on local impacts of single dams. Here we examined the highly regulated Colorado River Basin (CRB) to understand how flow alteration propagates in river networks, as influenced by the location and characteristics of dams as well as the structure of the river network—including the presence of tributaries. We used a spatial Markov network model informed by 117 upstream‐downstream pairs of monthly flow series (2003–2017) to estimate flow alteration from 84 intermediate‐to‐large dams representing >83% of the total storage in the CRB. Using Least Absolute Shrinkage and Selection Operator regression, we then investigated how flow alteration was influenced by local dam properties (e.g., purpose, storage capacity) and network‐level attributes (e.g., position, upstream cumulative storage). Flow alteration was highly variable across the network, but tended to accumulate downstream and remained high in the main stem. Dam impacts were explained by network‐level attributes (63%) more than by local dam properties (37%), underscoring the need to consider network context when assessing dam impacts. High‐impact dams were often located in sub‐watersheds with high levels of native fish biodiversity, fish imperilment, or species requiring seasonal flows that are no longer present. These three biodiversity dimensions, as well as the amount of dam‐free downstream habitat, indicate potential to restore river ecosystems via controlled flow releases. Our methods are transferrable and could guide screening for dam reoperation in other highly regulated basins.more » « less
- 
            Abstract Dams are often removed from rivers to restore habitat connectivity for biota such as fish. Removal of inland dams is well studied in temperate mainland rivers but this approach has been little studied in fish assemblages in islands, tropic systems, or for dams near the mouth of the river. In Puerto Rico, one of the most intensively dammed territories in the world, all native river fishes migrate between fresh water and the sea, and previous work shows that these movements are impeded or blocked by dams.Fish assemblages were compared before and after removal of the Cambalache dam, a porous, low‐head structure near the mouth of the Río Grande de Arecibo, as well as in two other rivers in western Puerto Rico, one with a similarly sized and positioned dam, and one reference river without artificial barriers. Fish were sampled using backpack electrofishing on 39 occasions during 2017–2019, including seven samples collected after removal of the Cambalache dam, at four to six sites per river.Fish assemblages upstream from dams were poorer in species, and species richness showed a marginal tendency (p = 0.0515) to increase upstream of the Cambalache dam 3 months after its removal. The two small lowland dams studied herein limited the upstream extent of marine species, which recolonised upstream sites of the Río Grande de Arecibo after removal of the Cambalache dam. An estimate of relative density (catch per unit effort) of common native freshwater species was higher above these two dams, and decreased at upstream sites after removal of the Cambalache dam. The estimated relative density of a native freshwater species that is of conservation concern, the American eel (Anguilla rostrata), was reduced above dams, and increased upstream of the former Cambalache dam after its removal.In extensive surveys conducted previously in Puerto Rico, sampling was concentrated higher in the catchment, and native fishes were more common and abundant below than above dams. The present work was conducted near the river mouth, and opposite results were observed. These contrasting results suggest that the effects of dams (or dam removal) on fish assemblages vary along the river gradient, although data from other systems are needed to confirm this.The present results suggest low‐head dam removal to be a viable method of restoring connectivity in fish assemblages in lower reaches of rivers in Puerto Rico and, potentially, other tropical islands. Removal of dams near the mouth of the river appears to be of particular benefit to marine fish species that use lower river reaches.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    