Two recently constructed run-of-the-river dams (Santo Antônio and Jirau), along the Madeira River in Brazil, have been controversial due to their large unquantified impacts on (1) land use and land cover (LULC) and (2) on the area that would be flooded. Based on annual LULC data from 1985 to 2017, this study integrated intensity analysis and difference components methods to analyze the impacts of the two dams on the annual flooded area in upstream, midstream, and downstream regions of the Madeira River. The dam construction significantly influenced LULC change intensity in the upstream and midstream regions since 2011 and 2010, respectively. An increase of 18.5% of the newly flooded area (462.58 km2) in the post-dam construction period was observed. The water gross gain intensity was active during 2011–2017 and 2011–2014 in upstream and midstream, respectively. The dominant difference components of water change were exchanged in the pre-dam period and became quantity in the post-dam period for both upstream and midstream regions. Forest was the major land category replaced by water; however, the highest gain intensities occurred in other non-vegetated areas in upstream and midstream. This study provided a useful approach for characterizing impacts of dam construction on water area change. 
                        more » 
                        « less   
                    
                            
                            Evaluating hydrological alterations and recommending minimum flow release from the Ujjani dam to improve the Bhima River ecosystem health
                        
                    
    
            Abstract Numerous anthropogenic activities like the construction of large dams, storages, and barrages changed the watershed characteristics impacting ecosystem health. In this study, the hydrological alterations (HAs) that have occurred in the Bhima River due to the construction of the Ujjani dam were analyzed. The hydraulic analysis is also performed to determine the hydraulic parameter and recommend the lowest flow release from the dam for improving ecosystem health. Fifty-eight years of data starting from the year 1960 to 2018 were gathered at Yadgir station, which is located downstream of the Ujjani dam. The data were divided into pre- and post-construction river flow discharge. To check for the change in the river flow regime for the post-dam construction period, HA was calculated using Flow Health Software (FHS). The results demonstrate that the dam impoundment reduces high flows primarily by storing flood flow for water supply, irrigation, etc. The velocity and depth provided by the environmental design flow for a flow health (FH) score of 0.62 give a very good habitat to fishes. A minimum release of 24.8 m3/s from the dam is recommended. This study will help policymakers mitigate the impacts of degrading ecosystem health of the Bhima River. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2125684
- PAR ID:
- 10443176
- Date Published:
- Journal Name:
- Water Science & Technology
- Volume:
- 88
- Issue:
- 3
- ISSN:
- 0273-1223
- Page Range / eLocation ID:
- 763 to 777
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This essay traces the historical relationship between the construction of the Nile River and the prevalence of disease in Egypt in the long twentieth century, with an eye to the relevance of this history to other regions on the African continent impacted by the construction of large dams. Beginning in the second decade of the nineteenth century and stretching through the 1970s, the Nile River underwent a dramatic process of transformation. Two large dams–the 1902 Khazan Aswan and the Aswan High Dam–were constructed on the river. Networks of perennial irrigation canals facilitated the practice of year-round agricultural production and the High Dam provided electricity. The remaking of Egypt’s riparian ecologies also had important implications for the health of Egypt’s population as these ecologies were associated with new landscapes of disease and approaches to biomedical treatment.more » « less
- 
            Abstract Large dams are a leading cause of river ecosystem degradation. Although dams have cumulative effects as water flows downstream in a river network, most flow alteration research has focused on local impacts of single dams. Here we examined the highly regulated Colorado River Basin (CRB) to understand how flow alteration propagates in river networks, as influenced by the location and characteristics of dams as well as the structure of the river network—including the presence of tributaries. We used a spatial Markov network model informed by 117 upstream‐downstream pairs of monthly flow series (2003–2017) to estimate flow alteration from 84 intermediate‐to‐large dams representing >83% of the total storage in the CRB. Using Least Absolute Shrinkage and Selection Operator regression, we then investigated how flow alteration was influenced by local dam properties (e.g., purpose, storage capacity) and network‐level attributes (e.g., position, upstream cumulative storage). Flow alteration was highly variable across the network, but tended to accumulate downstream and remained high in the main stem. Dam impacts were explained by network‐level attributes (63%) more than by local dam properties (37%), underscoring the need to consider network context when assessing dam impacts. High‐impact dams were often located in sub‐watersheds with high levels of native fish biodiversity, fish imperilment, or species requiring seasonal flows that are no longer present. These three biodiversity dimensions, as well as the amount of dam‐free downstream habitat, indicate potential to restore river ecosystems via controlled flow releases. Our methods are transferrable and could guide screening for dam reoperation in other highly regulated basins.more » « less
- 
            Jackson Lake supplies valuable cultural and provisioning ecosystem services to the Upper Snake River watershed in Wyoming and Idaho (western USA). Construction of Jackson Lake Dam in the early 20th century raised lake level by ∼12 m, generating an important water resource supporting agriculture and ranching, as well as tourism associated with Grand Teton National Park. Outlet engineering drastically altered Jackson Lake’s surface area, morphology, and relationship with the inflowing Snake River, yet the consequences for nutrient dynamics and algae in the lake are unknown. Here, we report the results of a retrospective environmental assessment completed for Jackson Lake using a paleolimnological approach. Paleoecological (diatoms) and geochemical datasets were developed on a well-dated sediment core and compared with available hydroclimate data from the region, to assess patterns of limnological change. The core spans the termination of the Little Ice Age and extends to the present day (∼1654–2019 CE). Diatom assemblages prior to dam installation are characterized by high relative abundances of plankton that thrive under low nutrient availability, most likely resulting from prolonged seasonal ice cover and perhaps a single, short episode of deep convective mixing. Following dam construction, diatom assemblages shifted to planktic species that favor more nutrient-rich waters. Elemental abundances of sedimentary nitrogen and phosphorous support the interpretation that dam installation resulted in a more mesotrophic state in Jackson Lake after ∼1916 CE. The data are consistent with enhanced nutrient loading associated with dam emplacement, which inundated deltaic wetlands and nearshore vegetation, and perhaps increased water residence times. The results of the study highlight the sensitivity of algal composition and productivity to changes in nutrient status that accompany outlet engineering of natural lakes by humans and have implications for water resource management.more » « less
- 
            Abstract Tonle Sap Lake in Cambodia is arguably the world's most productive freshwater ecosystems, as well as the dominant source of animal protein for the country. The rapid rise of hydropower schemes, deforestation, land development and climate change impacts in the Mekong River Basin, however, now represent serious concerns in regard to Tonle Sap Lake's ecological health and its role in future food security. To this end, the present study identifies significant recent warming of lake temperature and discusses how each of these anthropogenic perturbations in Tonle Sap's floodplain and the Mekong River Basin may be influencing this trend. The lake's dry season monthly average temperature increased by 0.03°C/year between 1988 and 2018, being largely in synchrony with warming trends of the local air temperature and upstream rivers. The impacts of deforestation and agriculture development in the lake's floodplain also exhibited a high correlation with an increased number of warm days observed in the lake, particularly in its southeast region (agricultureR2 = .61; deforestationR2 = .39). A total of 79 dams, resulting in 72 km3of volumetric water capacity, were constructed between 2003 and 2018 in the Mekong River Basin. This dam development coincided with a decreasing trend in the number of dry season warm days per year in the lower Mekong River, while Tonle Sap Lake's number of dry season warm days continued to increase during this same period. The present study revealed that Tonle Sap Lake's temperature trends are highly influenced by temperature trends in the local climate, agriculture development and deforestation of the lake's watershed. Although there were no noticeable impacts observed from upstream dam development in the Mekong River Basin, local‐to‐regional agricultural and land management of the lake's watershed appear to be effective strategies for maintaining a stable thermal regime in the lake in order to facilitate maximum ecosystem health.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    