Abstract Engineering electronic bandgaps is crucial for applications in information technology, sensing, and renewable energy. Transition metal dichalcogenides (TMDCs) offer a versatile platform for bandgap modulation through alloying, doping, and heterostructure formation. Here, the synthesis of a 2D MoxW1‐xS2graded alloy is reported, featuring a Mo‐rich center that transitions to W‐rich edges, achieving a tunable bandgap of 1.85 to 1.95 eV when moving from the center to the edge of the flake. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy showed the presence of sulfur monovacancy, VS, whose concentration varied across the graded MoxW1‐xS2layer as a function of Mo content with the highest value in the Mo‐rich center region. Optical spectroscopy measurements supported by ab initio calculations reveal a doublet electronic state of VS, which is split due to the spin‐orbit interaction, with energy levels close to the conduction band or deep in the bandgap depending on whether the vacancy is surrounded by W atoms or Mo atoms. This unique electronic configuration of VSin the alloy gave rise to four spin‐allowed optical transitions between the VSlevels and the valence bands. The study demonstrates the potential of defect and optical engineering in 2D monolayers for advanced device applications.
more »
« less
Spatially Composition-graded Monolayer WSe2xTe2−2x Nanosheets
Alloying in two-dimensional (2D) transition metal dichalcogenides (TMD) has allowed bandgap engineering and phase transformation, which provide more flexibility and functionality for electronic and photonic devices. To date, many ternary TMD alloys with homogenous compositions have been synthesized. However, realization of bandgap modulation spatially within a single TMD nanosheet remains largely unexplored. In this work, we demonstrate the synthesis of spatially composition-graded WSe2xTe2-2x flakes using an in situ chemical vapor deposition method. The photoluminescence and Raman spectra line-scanning characterization indicate a spatially graded bandgap, which increases from 1.46 eV (center) to 1.61 eV (edge) within one monolayer flake. Furthermore, the electronic devices based on this spatially graded material exhibit tunable transfer characteristics.
more »
« less
- Award ID(s):
- 1653241
- PAR ID:
- 10328633
- Date Published:
- Journal Name:
- 52th IEEE Semiconductor Interface Specialists Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr‐ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge‐transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr‐ESFG especially sensitive to the trion formation dynamics. The presence of charge‐transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.more » « less
-
Atomically thin two-dimensional transition-metal dichalcogenides (2D-TMDs) have emerged as semiconductors for next-generation nanoelectronics. As 2D-TMD-based devices typically utilize metals as the contacts, it is crucial to understand the properties of the 2D-TMD/metal interface, including the characteristics of the Schottky barriers formed at the semiconductor-metal junction. Conventional methods for investigating the Schottky barrier height (SBH) at these interfaces predominantly rely on contact-based electrical measurements with complex gating structures. In this study, we introduce an all-optical approach for non-contact measurement of the SBH, utilizing high-quality WS2/Au heterostructures as a model system. Our approach employs a below-bandgap pump to excite hot carriers from the gold into WS2 with varying thicknesses. By monitoring the resultant carrier density changes within the WS2 layers with a broadband probe, we traced the dynamics and magnitude of charge transfer across the interface. A systematic sweep of the pump wavelength enables us to determine the SBH values and unveil an inverse relationship between the SBH and the thickness of the WS2 layers. First-principles calculations reveal the correlation between the probability of injection and the density of states near the conduction band minimum of WS2. The versatile optical methodology for probing TMD/metal interfaces can shed light on the intricate charge transfer characteristics within various 2D heterostructures, facilitating the development of more efficient and scalable nano-electronic and optoelectronic technologies.more » « less
-
null (Ed.)Gallium oxide (Ga 2 O 3 ) and its most stable modification, monoclinic β-Ga 2 O 3 , is emerging as a primary material for power electronic devices, gas sensors and optical devices due to a high breakdown voltage, large bandgap, and optical transparency combined with electrical conductivity. Growth of β-Ga 2 O 3 is challenging and most methods require very high temperatures. Nanowires of β-Ga 2 O 3 have been investigated extensively as they might be advantageous for devices such as nanowire field effect transistors, and gas sensors benefiting from a large surface to volume ratio, among others. Here, we report a synthesis approach using a sulfide precursor (Ga 2 S 3 ), which requires relatively low substrate temperatures and short growth times to produce high-quality single crystalline β-Ga 2 O 3 nanowires in high yields. Even though Au- or Ag-rich nanoparticles are invariably observed at the nanowire tips, they merely serve as nucleation seeds while the nanowire growth proceeds via supply and local oxidation of gallium at the substrate interface. Absorption and cathodoluminescence spectroscopy on individual nanowires confirms a wide bandgap of 4.63 eV and strong luminescence with a maximum ∼2.7 eV. Determining the growth process, morphology, composition and optoelectronic properties on the single nanowire level is key to further application of the β-Ga 2 O 3 nanowires in electronic devices.more » « less
-
Abstract Device engineering based on the tunable electronic properties of ternary transition metal dichalcogenides has recently gained widespread research interest. In this work, monolayer ternary telluride core/shell structures are synthesized using a one‐step chemical vapor deposition process with rapid cooling. The core region is the tellurium‐rich WSe2−2xTe2xalloy, while the shell is the tellurium‐poor WSe2−2yTe2yalloy. The bandgap of the material is ≈1.45 eV in the core region and ≈1.57 eV in the shell region. The lateral gradient of the bandgap across the monolayer heterostructure allows for the fabrication of heterogeneous transistors and photodetectors. The difference in work function between the core and shell regions leads to a built‐in electric field at the heterojunction. As a result, heterogeneous transistors demonstrate a unidirectional conduction and strong photovoltaic effect. The bandgap gradient and high mobility of the ternary telluride core/shell structures provide a unique material platform for novel electronic and photonic devices.more » « less
An official website of the United States government

