skip to main content


Title: Van der Waals Vertical Transistors with Run­time Reconfigurability
In this work, we investigated vertical transistors with thin MoTe2 channels. The top and bottom contacts are asymmetrically doped under the electrostatic bias from the back gate. Reconfigurable polarity is observed in the vertical transistor under different current directions. Our results demonstrate short channel vertical transistors based on 2D semiconductor MoTe2 and provide a simple way to achieve run-time reconfiguration without additional control gates, which will be helpful to the design of highly-scaled and high-efficient integrated circuits.  more » « less
Award ID(s):
1653241
NSF-PAR ID:
10328635
Author(s) / Creator(s):
Date Published:
Journal Name:
52th IEEE Semiconductor Interface Specialists Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Transition metal dichalcogenides (TMDs) offer superior properties over conventional materials in many areas such as in electronic devices. In recent years, TMDs have been shown to display a phase switching mechanism under the application of external mechanical strain, making them exciting candidates for phase change transistors. Molybdenum ditelluride (MoTe2) is one such material that has been engineered as a strain-based phase change transistor. In this work, we explore various aspects of the mechanical properties of this material by a suite of computational and experimental approaches. First, we present parameterization of an interatomic potential for modeling monolayer as well as multilayered MoTe2 films. For generating the empirical potential parameter set, we fit results from density functional theory calculations using a random search algorithm known as particle swarm optimization. The potential closely predicts structural properties, elastic constants, and vibrational frequencies of MoTe2 indicating a reliable fit. Our simulated mechanical response matches earlier larger scale experimental nanoindentation results with excellent prediction of fracture points. Simulation of uniaxial tensile deformation by molecular dynamics shows the complete non-linear stress-strain response up to failure. Mechanical behavior, including failure properties, exhibits directional anisotropy due to the variation of bond alignments with crystal orientation. Furthermore, we show the deterioration of mechanical properties with increasing temperature. Finally, we present computational and experimental evidence of an extended c-axis strain transfer length in MoTe2 compared to TMDs with smaller chalcogen atoms. 
    more » « less
  2. GaN high-electron-mobility transistors (HEMTs) are known to have no avalanche capability and insufficient short-circuit robustness. Recently, breakthrough avalanche and short-circuit capabilities have been experimentally demonstrated in a vertical GaN fin-channel junction-gate field-effect transistor (Fin-JFET), which shows a good promise for using GaN devices in automotive powertrains and electric grids. In particular, GaN Fin-JFETs demonstrated good short-circuit capability at avalanche breakdown voltage (BV AVA ), with a failure-to-open-circuit (FTO) signature. This work presents a comprehensive device physics-based study of the GaN Fin-JFET under short-circuit conditions, particularly at a bus voltage close to BV AVA . Mixed-mode electrothermal TCAD simulations were performed to understand the carrier dynamics, electric field distributions, and temperature profiles in the Fin-JFET under short-circuit and avalanche conditions. The results provide important physical references to understand the unique robustness of the vertical GaN Fin-JFET under the concurrence of short-circuit and avalanche as well as its desirable FTO signature. 
    more » « less
  3. Power devices are highly desirable to possess excellent avalanche and short-circuit (or surge-current) robustness for numerous power electronics applications like automotive powertrains, electric grids, motor drives, among many others. Current commercial GaN power device, the lateral GaN high-electron-mobility transistor (HEMT), is known to have no avalanche capability and very limited short-circuit robustness. These limitations have become a roadblock for penetration of GaN devices in many industrial power applications. Recently, through collaborations with NexGen Power Systems (NexGen), Inc., we have demonstrated breakthrough avalanche, surge-current and short-circuit robustness in NexGen’s vertical GaN p-n diodes and fin-shape junction-gate field-effect-transistors (Fin-JFETs). These large-area GaN diodes and Fin-JFETs were manufactured in NexGen’s 100 mm GaN-on-GaN fab. The demonstrated avalanche, surge-current and short-circuit capabilities are comparable or even superior to Si and SiC power devices. Additionally, vertical GaN Fin-JFETs were found to fail to open-circuit under avalanche and short-circuit conditions, which is highly desirable for the system safety. This talk reviews the key robustness results of vertical GaN power devices and unveils the enabling device physics. Fundamentally, these results signify that, in contrast to some popular belief, GaN devices with appropriate designs can achieve excellent robustness and thereby encounter no barriers for applications in electric vehicles, grids, renewable processing, and industrial motor drives. 
    more » « less
  4. Abstract

    Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high‐speed electronics, on the other hand, usually demand operation frequencies in the gigahertz (GHz) regime, where the effect of dipolar oscillation is important. Herein, an unexpected giant GHz conductivity on the order of 103S m−1is observed in certain BiFeO3DWs, which is about 100 000 times greater than the carrier‐induced direct current (dc) conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the alternating current (ac) conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out‐of‐plane microwave fields and induce power dissipation, which is confirmed by the phase‐field modeling. Since the contributions from mobile‐carrier conduction and bound‐charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano‐devices for radio‐frequency applications.

     
    more » « less
  5. Doping organic semiconductors has become a key technology to increase the performance of organic light-emitting diodes, solar cells, or field-effect transistors (OFETs). However, doping can be used not only to optimize these devices but also to enable new design principles as well. Here, a novel type of OFET is reported—the vertical organic tunnel field-effect transistor. Based on heterogeneously doped drain and source contacts, charge carriers are injected from an n-doped source electrode into the channel by Zener tunneling and are transported toward a p-doped drain electrode. The working mechanism of these transistors is discussed with the help of a tunnel model that takes energetic broadening of transport states in organic semiconductors and roughness of organic layers into account. The proposed device principle opens new ways to optimize OFETs. It is shown that the Zener junction included between the source and drain of the vertical organic tunnel field-effect transistors suppresses short channel effects and improves the saturation of vertical OFETs. 
    more » « less