skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bi-incomplete Tambara functors
For an equivariant commutative ring spectrum R, \pi_0 R has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yields the additional structure of a Tambara functor. If R is an N_\infty ring spectrum in the category of genuine G-spectra, then all possible additive transfers are present and \pi_0 R has the structure of an incomplete Tambara functor. However, if R is an N_\infty ring spectrum in a category of incomplete G-spectra, the situation is more subtle. In this chapter, we study the algebraic theory of Tambara structures on incomplete Mackey functors, which we call bi-incomplete Tambara functors. Just as incomplete Tambara functors have compatibility conditions that control which systems of norms are possible, bi-incomplete Tambara functors have algebraic constraints arising from the possible interactions of transfers and norms. We give a complete description of the possible interactions between the additive and multiplicative structures.  more » « less
Award ID(s):
1812064
PAR ID:
10328638
Author(s) / Creator(s):
;
Editor(s):
Balchin, S.; Barnes, D.; Kędziorek, M.; Szymik, M.
Date Published:
Journal Name:
Equivariant Topology and Derived Algebra
Page Range / eLocation ID:
276 - 313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tambara functors are an equivariant generalization of rings that appear as the homotopy groups of genuine equivariant commutative ring spectra. In recent work, Blumberg and Hill have studied the corresponding algebraic structures, called bi-incomplete Tambara functors, that arise from ring spectra indexed on incomplete G-universes. We answer a conjecture of Blumberg and Hill by proving a generalization of the Hoyer–Mazur theorem in the bi-incomplete setting. Bi-incomplete Tambara functors are characterized by indexing categories which parametrize incomplete systems of norms and transfers. In the course of our work, we develop several new tools for studying these indexing categories. In particular, we provide an easily checked, combinatorial characterization of when two indexing categories are compatible in the sense of Blumberg and Hill. 
    more » « less
  2. Abstract Free algebras are always free as modules over the base ring in classical algebra. In equivariant algebra, free incomplete Tambara functors play the role of free algebras and Mackey functors play the role of modules. Surprisingly, free incomplete Tambara functors often fail to be free as Mackey functors. In this paper, we determine for all finite groups conditions under which a free incomplete Tambara functor is free as a Mackey functor. For solvable groups, we show that a free incomplete Tambara functor is flat as a Mackey functor precisely when these conditions hold. Our results imply that free incomplete Tambara functors are almost never flat as Mackey functors. However, we show that after suitable localizations, free incomplete Tambara functors are always free as Mackey functors. 
    more » « less
  3. null (Ed.)
    We introduce a computationally tractable way to describe the $$\mathbb Z$$-homotopy fixed points of a $$C_{n}$$-spectrum $$E$$, producing a genuine $$C_{n}$$ spectrum $$E^{hn\mathbb Z}$$ whose fixed and homotopy fixed points agree and are the $$\mathbb Z$$-homotopy fixed points of $$E$$. These form the bottom piece of a contravariant functor from the divisor poset of $$n$$ to genuine $$C_{n}$$-spectra, and when $$E$$ is an $$N_{\infty}$$-ring spectrum, this functor lifts to a functor of $$N_{\infty}$$-ring spectra. For spectra like the Real Johnson--Wilson theories or the norms of Real bordism, the slice spectral sequence provides a way to easily compute the $RO(G)$-graded homotopy groups of the spectrum $$E^{hn\mathbb Z}$$, giving the homotopy groups of the $$\mathbb Z$$-homotopy fixed points. For the more general spectra in the contravariant functor, the slice spectral sequences interpolate between the one for the norm of Real bordism and the especially simple $$\mathbb Z$$-homotopy fixed point case, giving us a family of new tools to simplify slice computations. 
    more » « less
  4. For N∞ operads O and O' such that there is an inclusion of the associated indexing systems, there is a forgetful functor from incomplete Tambara functors over O' to incomplete Tambara functors over O. Roughly speaking, this functor forgets the norms in O' that are not present in O. The forgetful functor has both a left and a right adjoint; the left adjoint is an operadic tensor product, but the right adjoint is more mysterious. We explicitly compute the right adjoint for finite cyclic groups of prime order. 
    more » « less
  5. The topological Hochschild homology of a ring (or ring spectrum) R is an S1-spectrum, and the fixed points of THH(R) for subgroups C_n of S1 have been widely studied due to their use in algebraic K-theory computations. Hesselholt and Madsen proved that the fixed points of topological Hochschild homology are closely related to Witt vectors. Further, they defined the notion of a Witt complex, and showed that it captures the algebraic structure of the homotopy groups of the fixed points of THH. Recent work defines a theory of twisted topological Hochschild homology for equivariant rings (or ring spectra) that builds upon Hill, Hopkins and Ravenel's work on equivariant norms. In this paper, we study the algebraic structure of the equivariant homotopy groups of twisted THH. In particular, drawing on the definition of equivariant Witt vectors by Blumberg, Gerhardt, Hill and Lawson, we define an equivariant Witt complex and prove that the equivariant homotopy of twisted THH has this structure. Our definition of equivariant Witt complexes contributes to a growing body of research in the subject of equivariant algebra. 
    more » « less